cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068963 a(n) = Sum_{d|n} phi(d^3).

Original entry on oeis.org

1, 5, 19, 37, 101, 95, 295, 293, 505, 505, 1211, 703, 2029, 1475, 1919, 2341, 4625, 2525, 6499, 3737, 5605, 6055, 11639, 5567, 12601, 10145, 13627, 10915, 23549, 9595, 28831, 18725, 23009, 23125, 29795, 18685, 49285, 32495, 38551, 29593
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[EulerPhi[Divisors[n]^3]],{n,50}] (* Harvey P. Dale, Feb 24 2013 *)
    f[p_, e_] := p^2*(p - 1)*(p^(3 e) - 1)/(p^3 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Jun 19 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d^3)); \\ Michel Marcus, Mar 10 2018

Formula

Also Sum_{d|n} d*phi(d^2), or Sum_{d|n} d^2*phi(d).
Also Sum_{k=1..n} (n/gcd(n, k))^2 = Sum_{k=1..n} (lcm(n, k)/k)^2. - Vladeta Jovovic, Dec 29 2002
Multiplicative with a(p^e) = 1 + p^2 * (p-1)*(p^(3e)-1)/(p^3-1).
G.f.: Sum_{k>=1} k^2*phi(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 10 2018
Dirichlet g.f.: Sum_{n>=1} a(n) / n^s = zeta(s) * zeta(s-3) / zeta(s-2). - Werner Schulte, Feb 18 2021
Sum_{k=1..n} a(k) ~ Pi^2 * n^4 / 60. - Vaclav Kotesovec, Aug 20 2021