cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068970 a(n) = Sum_{d|n} phi(d^4).

Original entry on oeis.org

1, 9, 55, 137, 501, 495, 2059, 2185, 4429, 4509, 13311, 7535, 26365, 18531, 27555, 34953, 78609, 39861, 123463, 68637, 113245, 119799, 267675, 120175, 313001, 237285, 358723, 282083, 682893, 247995, 893731, 559241, 732105, 707481, 1031559, 606773, 1823509
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2002

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> add(numtheory:-phi(d^4),d=numtheory:-divisors(n)):
    map(f, [$1..100]); # Robert Israel, Sep 13 2018
  • Mathematica
    Table[Total[EulerPhi[Divisors[n]^4]], {n, 40}] (* Vincenzo Librandi, Sep 13 2018 *)
    f[p_, e_] := 1 + p^3*(p - 1)*(p^(4*e) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Dec 01 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d^4)); \\ Michel Marcus, Mar 10 2018

Formula

Also Sum_{d|n} d^m*phi(d^(4-m)) for m=0, 1, 2, 3.
Multiplicative with a(p^e) = 1 + p^3 * (p-1)(p^(4e)-1)/(p^4-1).
G.f.: Sum_{k>=1} k^3*phi(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 10 2018
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(2)) = 0.126075... . - Amiram Eldar, Dec 01 2022
From Peter Bala, Jan 21 2024: (Start)
a(n) = Sum_{k = 1..n} (n/gcd(k, n))^3 = Sum_{k = 1..n} (lcm(k, n)/k)^3.
Dirichlet g.f.: zeta(s) * zeta(s-4)/zeta(s-3). (End)