A069290 Sum of the square roots of the square divisors of n.
1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 7, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 7, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 7, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 15, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 7, 13, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 7, 1, 8, 4, 18, 1, 1
Offset: 1
Examples
Square divisors for n=48: {1, 2^2, 4^2}, so a(48) = 1+2+4 = 7.
Links
- Nick Hobson, Table of n, a(n) for n = 1..1000
- A. Dixit, B. Maji, and A. Vatwani, Voronoi summation formula for the generalized divisor function sigma_z^k(n), arXiv:2303.09937 [math.NT], 2023, sigma_(z=1,k=2,n).
Programs
-
Mathematica
nn = 102;f[list_, i_] := list[[i]]; a =Table[If[IntegerQ[n^(1/2)], n^(1/2), 0], {n, 1, nn}]; b =Table[1, {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 21 2015 *) f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
-
PARI
vector(102, n, sumdiv(n, d, issquare(d)*sqrtint(d)))
-
PARI
a(n)={my(s=0);fordiv(n,d,if(issquare(d),s+=sqrtint(d)));s;} \\ Joerg Arndt, Feb 22 2015
-
Python
from math import prod from sympy import factorint def A069290(n): return prod((p**(q//2+1)-1)//(p-1) for p, q in factorint(n).items()) # Chai Wah Wu, Jun 14 2021
Formula
Multiplicative with a(p^e) = (p^(floor(e/2)+1)-1)/(p-1). - Vladeta Jovovic, Apr 23 2002
G.f.: Sum_{k>=1} k*x^k^2/(1-x^k^2). - Ralf Stephan, Apr 21 2003
Dirichlet g.f.: zeta(2s-1)*zeta(s). Inverse Mobius transform of A037213. - R. J. Mathar, Oct 31 2011
Sum_{k=1..n} a(k) ~ n/2 * (log(n) - 1 + 3*gamma), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 31 2019
a(n) = Sum_{k=1..n} (1 - ceiling(n/k^2) + floor(n/k^2)) * k. - Wesley Ivan Hurt, Jan 28 2021
a(n) = Sum_{d|n} d^(1/2)*(1-(-1)^tau(d))/2, [See Mathar comment]. - Wesley Ivan Hurt, Jul 09 2025
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jul 01 2002
Comments