cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069290 Sum of the square roots of the square divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 7, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 7, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 7, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 15, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 7, 13, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 7, 1, 8, 4, 18, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

a(m)=1 iff m is squarefree (A005117).

Examples

			Square divisors for n=48: {1, 2^2, 4^2}, so a(48) = 1+2+4 = 7.
		

Crossrefs

Programs

  • Mathematica
    nn = 102;f[list_, i_] := list[[i]]; a =Table[If[IntegerQ[n^(1/2)], n^(1/2), 0], {n, 1, nn}]; b =Table[1, {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 21 2015 *)
    f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
  • PARI
    vector(102, n, sumdiv(n, d, issquare(d)*sqrtint(d)))
    
  • PARI
    a(n)={my(s=0);fordiv(n,d,if(issquare(d),s+=sqrtint(d)));s;} \\ Joerg Arndt, Feb 22 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A069290(n): return prod((p**(q//2+1)-1)//(p-1) for p, q in factorint(n).items()) # Chai Wah Wu, Jun 14 2021

Formula

Multiplicative with a(p^e) = (p^(floor(e/2)+1)-1)/(p-1). - Vladeta Jovovic, Apr 23 2002
G.f.: Sum_{k>=1} k*x^k^2/(1-x^k^2). - Ralf Stephan, Apr 21 2003
Dirichlet g.f.: zeta(2s-1)*zeta(s). Inverse Mobius transform of A037213. - R. J. Mathar, Oct 31 2011
Sum_{k=1..n} a(k) ~ n/2 * (log(n) - 1 + 3*gamma), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 31 2019
a(n) = Sum_{k=1..n} (1 - ceiling(n/k^2) + floor(n/k^2)) * k. - Wesley Ivan Hurt, Jan 28 2021
a(n) = A000203(A000188(n)). - Amiram Eldar, Sep 01 2023
a(n) = Sum_{d|n} d^(1/2)*(1-(-1)^tau(d))/2, [See Mathar comment]. - Wesley Ivan Hurt, Jul 09 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 01 2002