cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A205571 Expansion of e.g.f. 1/(1 - x*cosh(x)).

Original entry on oeis.org

1, 1, 2, 9, 48, 305, 2400, 22057, 230272, 2708001, 35412480, 509177801, 7986468864, 135718942801, 2483729876992, 48699677975145, 1018542257111040, 22634000289407297, 532557637644976128, 13226748101381102473, 345792863300174479360, 9492229607399841038961
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2012

Keywords

Comments

Radius of convergence of e.g.f. is |x| < r where r = 0.7650099545507... satisfies cosh(r) = 1/r. See A069814.

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 48*x^4/4! + 305*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x*Cosh[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 13 2013 *)
  • PARI
    {a(n)=n!*polcoeff(1/(1-x*cosh(x +x*O(x^n))),n)}
    
  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a(n) = sum(k=0, n, k!*a185951(n, k)); \\ Seiichi Manyama, Feb 17 2025

Formula

a(2*n-1) == 1 (mod 4), a(2*n+2) == 0 (mod 4), for n>=1.
a(n) ~ n!/(1+r*sqrt(1-r^2))*(1/r)^n, where r = A069814 = 0.7650099545507321... is the root of the equation r*cosh(r)=1. - Vaclav Kotesovec, Feb 13 2013
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1) * (2*k+1) * a(n-2*k-1). - Ilya Gutkovskiy, Mar 10 2022
a(n) = Sum_{k=0..n} k! * A185951(n,k). - Seiichi Manyama, Feb 17 2025

A201939 Decimal expansion of x>0 satisfying x*cosh(x)=2.

Original entry on oeis.org

1, 1, 5, 0, 5, 8, 4, 9, 6, 7, 4, 1, 8, 6, 6, 3, 9, 4, 9, 5, 3, 4, 9, 3, 3, 7, 3, 3, 6, 1, 3, 7, 8, 8, 1, 9, 5, 7, 6, 6, 8, 3, 7, 4, 9, 4, 8, 4, 4, 2, 4, 2, 3, 4, 1, 1, 8, 3, 3, 9, 2, 5, 1, 8, 0, 8, 8, 3, 2, 2, 5, 4, 6, 1, 7, 6, 4, 1, 1, 7, 2, 8, 0, 1, 3, 6, 7, 5, 4, 4, 1, 4, 5, 2, 4, 6, 9, 9, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2011

Keywords

Comments

For many choices of u and v, there is exactly one x>0 satisfying x*cosh(u*x)=v. Guide to related sequences, with graphs included in Mathematica programs:
u.... v.... x
1.... 1.... A069814
1.... 2.... A201939
1.... 3.... A201943
2.... 1.... A201944
3.... 1.... A201945
2.... 2.... A202283
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A201939, take f(x,u,v)=x*cosh(u*x)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			1.15058496741866394953493373361378819576...
		

Crossrefs

Cf. A201946.

Programs

  • Mathematica
    (* Program 1:  A201939 *)
    u = 1; v = 2;
    f[x_] := x*Cosh[u*x]; g[x_] := v
    Plot[{f[x], g[x]}, {x, 0, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[r]  (* A201939 *)
    (* Program 2: implicit surface of u*cosh(x)=v *)
    f[{x_, u_, v_}] := x*Cosh[u*x] - v;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, .2}]}, {v, 0, 20}, {u, 1, 9}];
    ListPlot3D[Flatten[t, 1]] (* for A201939 *)

A385281 Expansion of e.g.f. 1/(1 - 2 * x * cosh(2*x))^(1/2).

Original entry on oeis.org

1, 1, 3, 27, 249, 2825, 41355, 708883, 13888497, 309267729, 7698772755, 211585744139, 6367841422569, 208299923870233, 7357493992966299, 279095125351544835, 11316313498670411745, 488403056864943302177, 22355228989851909617187, 1081663315375339026249211
Offset: 0

Views

Author

Seiichi Manyama, Jun 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a001147(n) = prod(k=0, n-1, 2*k+1);
    a(n) = sum(k=0, n, a001147(k)*2^(n-k)*a185951(n, k));

Formula

a(n) = Sum_{k=0..n} A001147(k) * 2^(n-k) * A185951(n,k), where A185951(n,0) = 0^n.
a(n) ~ 2^(n + 1/2) * n^n / (sqrt(1 + r*sqrt(1 - r^2)) * exp(n) * r^n), where r = A069814. - Vaclav Kotesovec, Jun 24 2025

A385282 Expansion of e.g.f. 1/(1 - 3 * x * cosh(3*x))^(1/3).

Original entry on oeis.org

1, 1, 4, 55, 712, 11605, 248320, 6218443, 178519936, 5846857993, 214490045440, 8700546508159, 387053184719872, 18737207168958109, 980424546959183872, 55142056940797803475, 3317502712746788945920, 212592531182720568805777, 14456626429227650204041216
Offset: 0

Views

Author

Seiichi Manyama, Jun 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
    a007559(n) = prod(k=0, n-1, 3*k+1);
    a(n) = sum(k=0, n, a007559(k)*3^(n-k)*a185951(n, k));

Formula

a(n) = Sum_{k=0..n} A007559(k) * 3^(n-k) * A185951(n,k), where A185951(n,0) = 0^n.
a(n) ~ sqrt(2*Pi) * 3^n * n^(n - 1/6) / (Gamma(1/3) * (1/r + sqrt(1 - r^2))^(1/3) * exp(n) * r^(n + 1/3)), where r = A069814. - Vaclav Kotesovec, Jun 24 2025

A009305 Expansion of e.g.f. log(1 + x*cosh(x)).

Original entry on oeis.org

0, 1, -1, 5, -18, 89, -600, 4717, -42896, 449073, -5287680, 69090581, -993391872, 15583801609, -264816161792, 4846181282685, -95022445824000, 1987373846425697, -44163232640630784, 1039121484066627877, -25807915421845422080, 674707915373741222841
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A069814.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Log[1+Cosh[x]*x],{x,0,nn}],x]Range[ 0,nn]!] (* Harvey P. Dale, Mar 09 2013 *)
  • Maxima
    a(n):=n!*sum(sum((k-2*i)^(n-k)*binomial(k,i),i,0,k)/(2^k*(n-k)!)*(-1)^(k-1)/k,k,1,n-1)+(-1)^(n-1)*(n-1)!; /* Vladimir Kruchinin, Apr 21 2011 */
    
  • PARI
    x='x+O('x^66); /* that many terms */
    egf=log(1+x*cosh(x)); /* = x - 1/2*x^2 + 5/6*x^3 - 3/4*x^4 + 89/120*x^5 +-... */
    Vec(serlaplace(egf)) /* show terms */ /* Joerg Arndt, Apr 21 2011 */

Formula

a(n) = n!*Sum_{k=1..n-1} ((Sum_{i=0..k} (k-2*i)^(n-k)*binomial(k,i)) /(2^k*(n-k)!)*(-1)^(k-1)/k) + (-1)^(n-1)*(n-1)!. - Vladimir Kruchinin, Apr 21 2011
a(n) ~ (n-1)! * (-1)^(n+1) / r^n, where r = 0.765009954550732122655321742482815219200352137475... (see A069814) is the root of the equation r*cosh(r) = 1 . - Vaclav Kotesovec, Jan 24 2015

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition corrected by Joerg Arndt, Apr 21 2011
Showing 1-5 of 5 results.