cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A242720 Smallest even k such that the pair {k-3,k-1} is not a twin prime pair and lpf(k-1) > lpf(k-3) >= prime(n), where lpf = least prime factor (A020639).

Original entry on oeis.org

12, 38, 80, 212, 224, 440, 440, 854, 1250, 1460, 1742, 2282, 2282, 3434, 4190, 4664, 4760, 4760, 6890, 8054, 8054, 8054, 12374, 12830, 12830, 13592, 13592, 14282, 17402, 17402, 18212, 22502, 22502, 22502, 25220, 28202, 28202, 32234, 32402, 32402, 38012
Offset: 2

Views

Author

Vladimir Shevelev, May 21 2014

Keywords

Comments

The sequence is nondecreasing. See comment in A242758.
a(n) >= prime(n)^2+3. Conjecture: a(n) <= prime(n)^4. - Vladimir Shevelev, Jun 01 2014
Conjecture. There are only a finite number of composite numbers of the form a(n)-1. Peter J. C. Moses found only two: a(16)-1 = 4189 = 59*71 and a(20)-1 = 6889 = 83^2 and no others up to a(2501). Most likely, there are no others. - Vladimir Shevelev, Jun 09 2014

Crossrefs

Programs

  • Mathematica
    lpf[n_] := FactorInteger[n][[1, 1]];
    Clear[a]; a[n_] := a[n] = For[k = If[n <= 2, 2, a[n-1]], True, k = k+2, If[Not[PrimeQ[k-3] && PrimeQ[k-1]] && lpf[k-1] > lpf[k-3] >= Prime[n], Return[k]]];
    Table[a[n], {n, 2, 50}] (* Jean-François Alcover, Nov 02 2018 *)
  • PARI
    lpf(k) = factorint(k)[1,1];
    vector(60, n, k=6; while((isprime(k-3) && isprime(k-1)) || lpf(k-1)<=lpf(k-3) || lpf(k-3)Colin Barker, Jun 01 2014

Formula

Conjecturally, a(n) ~ (prime(n))^2, as n goes to infinity (cf. A246748, A246821). - Vladimir Shevelev, Sep 02 2014
For n>=3, a(n) >= (prime(n)+1)^2 + 2. Equality holds for terms of A246824. - Vladimir Shevelev, Sep 04 2014

A157468 Primes of the form sqrt(p-1)-1, where p is a prime.

Original entry on oeis.org

3, 5, 13, 19, 23, 53, 73, 83, 89, 109, 149, 179, 223, 229, 239, 263, 269, 283, 313, 349, 383, 419, 439, 443, 463, 569, 593, 643, 653, 673, 739, 859, 863, 919, 929, 1009, 1069, 1093, 1123, 1289, 1319, 1373, 1409, 1429, 1433, 1439, 1459
Offset: 1

Views

Author

Keywords

Examples

			3 is in the sequence because 3 = sqrt(17 - 1) - 1, where 17 is prime.
5 is in the sequence because 5 = sqrt(37 - 1) - 1, where 37 is prime.
		

Crossrefs

Column k=1 of A238048 and A238086.

Programs

  • Mathematica
    Select[Sqrt[#-1]-1&/@Prime[Range[200000]],PrimeQ]  (* Harvey P. Dale, May 19 2012 *)

A070156 Numbers k such that k-1, k+1, k^2+1 and k^4+1 are all prime numbers.

Original entry on oeis.org

4, 6, 180, 3390, 18060, 19380, 34500, 92220, 92640, 96180, 114660, 127680, 133980, 140760, 159630, 161880, 172170, 207480, 254280, 255840, 263820, 296910, 309780, 378570, 380880, 397590, 408690, 422880, 432660, 440550, 511170, 540390, 572940
Offset: 1

Views

Author

Labos Elemer, Apr 23 2002

Keywords

Examples

			For n = 6: 5, 7, 37, 1297 are all primes.
		

Crossrefs

Subsequence of A070155.
Cf. A001359.

Programs

  • Mathematica
    Do[s=n; If[PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[1+n^2] &&PrimeQ[1+n^4], Print[n]], {n, 1, 1000000}]
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^4+1); \\ Amiram Eldar, Jun 21 2024

Extensions

Offset corrected by Amiram Eldar, Jun 21 2024

A070025 At these values of k, the 1st, 2nd, 3rd and 4th cyclotomic polynomials all give prime numbers.

Original entry on oeis.org

6, 150, 2730, 9000, 9240, 35280, 41760, 43050, 53280, 65520, 76650, 96180, 111030, 148200, 197370, 207480, 213360, 226380, 254280, 264600, 309480, 332160, 342450, 352740, 375450, 381990, 440550, 458790, 501030, 527070, 552030, 642360, 660810
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that k-1, k+1, k^2+k+1 and k^2+1 are all primes.

Examples

			For k = 6: 5, 7, 43 and 37 are prime values of the first 4 cyclotomic polynomials.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[1+n+n^2]&&PrimeQ[1+n^2], AppendTo[lst, n]], {n, 10^6}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)
    Select[Range[10^6], Function[k, AllTrue[Cyclotomic[#, k] & /@ Range@ 4, PrimeQ]]] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1); \\ Amiram Eldar, Sep 24 2024

A129293 Numbers m such that m^4-1 has no divisors d with 1 < d < m-1.

Original entry on oeis.org

3, 4, 6, 150, 180, 240, 270, 420, 570, 1290, 1320, 2310, 2550, 2730, 3360, 3390, 4260, 4650, 5850, 5880, 6360, 6780, 9000, 9240, 9630, 10530, 10890, 11970, 13680, 13830, 14010, 14550, 16230, 16650, 18060, 18120, 18540, 19140, 19380, 21600, 21840, 23370
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 09 2007

Keywords

Comments

Essentially the same as A070155, since m^4-1=(m-1)(m+1)(1+m^2). - R. J. Mathar, Jun 14 2008

Examples

			{1,5,7,35,37,185,259,1295} is the set of divisors of 6^4-1, therefore 6 is a term, A129292(6) = #{1,3} = 2.
		

Crossrefs

Programs

  • PARI
    is(k) = k == 3 || (isprime(k-1) && isprime(k+1) && isprime(k^2+1)); \\ Amiram Eldar, Apr 15 2024

Formula

A129292(a(n)) = #{1, a(n)-1} = 2.

A070020 At these values of k the first, 2nd and 3rd cyclotomic polynomials all give prime numbers.

Original entry on oeis.org

6, 12, 138, 150, 192, 348, 642, 1020, 1092, 1230, 1620, 1788, 1932, 2112, 2142, 2238, 2658, 2688, 2730, 3330, 3540, 3918, 4002, 4158, 5010, 5640, 6090, 6450, 6552, 6702, 7950, 8088, 9000, 9042, 9240, 9462, 9768, 10008, 10092, 10272, 10302, 10332
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that k-1, k+1 and k^2+k+1 are all primes.

Examples

			For k = 6: 5, 7 and 43 are prime values of the first 3 cyclotomic polynomials.
		

Crossrefs

Programs

  • Mathematica
    psQ[n_]:=And@@PrimeQ[{n-1,n+1,n^2+n+1}]; Select[Range[11000],psQ] (* Harvey P. Dale, Nov 05 2011 *)
    Select[Range[10500], AllTrue[Cyclotomic[Range@ 3, #], PrimeQ] &] (* Michael De Vlieger, Dec 08 2018 *)
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+k+1); \\ Amiram Eldar, Sep 24 2024

A070157 Numbers k such that k-1, k+1, k^2+1, k^4+1 and k^8+1 are all prime numbers.

Original entry on oeis.org

4, 19380, 9443670, 11054760, 15992070, 22482330, 32557380, 51102510, 57978840, 60549240, 64671570, 84045960, 89757960, 111316170, 112821690, 116433510, 171124380, 171418650, 183082350, 196694760, 197021160, 241803240, 266498460
Offset: 1

Views

Author

Labos Elemer, Apr 23 2002

Keywords

Examples

			19380 is a term since 19380-1 = 19379, 19380+1 = 19381, 19380^2+1 = 375584401, 19380^4+1 = 141063641523360001 and 19380^8+1 = 19898950959831015581425689600000001 are primes.
		

Crossrefs

Subsequence of A070155 and A070156.

Programs

  • Mathematica
    Do[p = Prime[n] + 1; If[ PrimeQ[p + 1] && PrimeQ[1 + p^2] && PrimeQ[1 + p^4] && PrimeQ[1 + p^8], Print[p]], {n, 1, 115000000}]
    Select[Range[2665*10^5],AllTrue[{#-1,#+1,#^2+1,#^4+1,#^8+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 03 2019 *)
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^4+1) && isprime(k^8+1); \\ Amiram Eldar, Jun 26 2024

Extensions

Edited and extended by Robert G. Wilson v, May 04 2002

A070042 At these values of k the 1st, 2nd, 3rd, 4th and 5th cyclotomic polynomials all give prime numbers.

Original entry on oeis.org

1068630, 1441590, 1867950, 3429300, 4084230, 5651730, 6322890, 6770610, 7158630, 7804830, 9437760, 9624270, 13625850, 23194860, 25848840, 26588520, 28714950, 29451840, 32984430, 33650580, 36500910, 38177130, 42856590, 49531020, 50016540, 50222070, 52083330, 54637590
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that C1(k) = k-1, C2(k) = k+1, C3(k) = k^2+k+1, C4(k) = k^2+1 and C5(k) = k^4+k^3+k^2+k+1 are all primes.

Examples

			For k = 1068630: the 1st, 2nd, 3rd, 4th and 5th cyclotomic polynomials give a quintet of primes: {1068629, 1068631, 1141971145531, 1141970076901, 1304096876879617162402531}.
		

Crossrefs

Programs

  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1) && isprime(k^4+k^3+k^2+k+1) ; \\ Amiram Eldar, Sep 24 2024

Extensions

More terms from Don Reble, May 11 2002
a(24)-a(28) from Amiram Eldar, Sep 24 2024
Showing 1-8 of 8 results.