cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070366 a(n) = 5^n mod 9.

Original entry on oeis.org

1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, 2, 1, 5, 7
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Comments

Period 6: repeat [1, 5, 7, 8, 4, 2].
Also the digital root of 5^n. - Cino Hilliard, Dec 31 2004
Digital root of the powers of any number congruent to 5 mod 9. - Alonso del Arte, Jan 26 2014

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 4, A100402; c = 7, A070403; c = 8, A010689.

Programs

Formula

From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
G.f.: ( 1+4*x+2*x^2+2*x^3 ) / ( (1-x)*(1+x)*(x^2-x+1) ). (End)
a(n) = 1/2^n (mod 9), n >= 0. - Wolfdieter Lang, Feb 18 2014
a(n) = A010878(A000351(n)). - Michel Marcus, Feb 20 2014
From G. C. Greubel, Mar 05 2016: (Start)
a(n) = a(n-6) for n>5.
E.g.f.: (1/2)*(9*exp(x) - exp(-x) + 2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2) - 6*exp(x/2)*cos(sqrt(3)*x/2)). (End)
a(n) = (9 - cos(n*Pi) - 6*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3))/2. - Wesley Ivan Hurt, Jun 28 2016
a(n) = 2^((-n) mod 6) mod 9. - Joe Slater, Mar 23 2017
a(n) = A007953(5*a(n-1)) = A010888(5*a(n-1)). - Stefano Spezia, Mar 20 2025