cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A201910 Irregular triangle of 5^k mod prime(n).

Original entry on oeis.org

1, 1, 2, 0, 1, 5, 4, 6, 2, 3, 1, 5, 3, 4, 9, 1, 5, 12, 8, 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1, 5, 25, 9, 16, 22, 23, 28, 24, 4
Offset: 1

Views

Author

T. D. Noe, Dec 07 2011

Keywords

Comments

Except for the third row, the first term of each row is 1. Many sequences are in this one: starting at A036121 (mod 23) and A070365 (mod 7).

Examples

			The first 9 rows are:
1
1, 2
0
1, 5, 4, 6, 2, 3
1, 5, 3, 4, 9
1, 5, 12, 8
1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7
1, 5, 6, 11, 17, 9, 7, 16, 4
1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14
		

Crossrefs

Cf. A201908 (2^k), A201909 (3^k), A201911 (7^k).
Cf. A070365 (7), A070367 (11), A070368 (13), A070371 (17), A070373 (19), A036121 (23), A070379 (29), A070384 (37), A070387 (41), A070389 (43), A036127 (47), A036133 (73), A036137 (97), A036139 (103), A036149 (157), A036151 (167), A036156 (193).

Programs

  • GAP
    P:=Filtered([1..350],IsPrime);;
    R:=List([1..Length(P)],n->OrderMod(5,P[n]));;
    Flat(Concatenation([1,1,2,0],List([3..10],n->List([0..R[n]-1],k->PowerMod(5,k,P[n]))))); # Muniru A Asiru, Feb 02 2019
  • Mathematica
    nn = 10; p = 5; t = p^Range[0,Prime[nn]]; Flatten[Table[If[Mod[n, p] == 0, {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, Prime[Range[nn]]}]]

A271378 a(n) = 5^n mod 31.

Original entry on oeis.org

1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25
Offset: 0

Views

Author

Vincenzo Librandi, Apr 06 2016

Keywords

Comments

Period 3: repeat [1, 5, 25].

Crossrefs

Cf. similar sequences of the type 5^n mod p, where p is a prime: A070365 (p=7), A070367 (p=11), A070368 (p=13), A070371 (p=17), A070373 (p=19), A036121 (p=23), A070379 (p=29), this sequence (p=31), A070384 (p=37), A070387 (p=41), A070389 (p=43), A036127 (p=47), A036133 (p=73), A036137 (p=97), A271379 (p=101), A036139 (p=103), A036149 (p=157), A271380 (p=163) A036151 (p=167), A036156 (p=193).

Programs

  • Magma
    [Modexp(5, n, 31): n in [0..100]];
    
  • Magma
    &cat [[1,5,25]^^30]; // Bruno Berselli, Apr 07 2016
    
  • Maple
    seq(op([1, 5, 25]), n=0..50); # Wesley Ivan Hurt, Jun 30 2016
  • Mathematica
    PowerMod[5, Range[0, 100], 31]
  • PARI
    x='x+O('x^99); Vec((1+5*x+25*x^2)/(1-x^3)) \\ Altug Alkan, Apr 06 2016

Formula

G.f.: (1+5*x+25*x^2)/(1-x^3).
a(n) = a(n-3) for n>2.
a(n) = 5^(n mod 3).
a(n) = (31 - 28*cos(2*n*Pi/3) - 20*sqrt(3)*sin(2*n*Pi/3))/3. - Wesley Ivan Hurt, Jun 30 2016

Extensions

Edited by Bruno Berselli, Apr 07 2016

A187532 a(n) = 4^n mod 19.

Original entry on oeis.org

1, 4, 16, 7, 9, 17, 11, 6, 5, 1, 4, 16, 7, 9, 17, 11, 6, 5, 1, 4, 16, 7, 9, 17, 11, 6, 5, 1, 4, 16, 7, 9, 17, 11, 6, 5, 1, 4, 16, 7, 9, 17, 11, 6, 5, 1, 4, 16, 7, 9, 17, 11, 6, 5, 1, 4, 16, 7, 9, 17, 11, 6, 5, 1, 4, 16, 7, 9, 17, 11, 6, 5, 1, 4, 16, 7, 9, 17, 11, 6, 5
Offset: 0

Views

Author

M. F. Hasler, Mar 10 2011

Keywords

Comments

Period 9: repeat (1,4,16,7,9,17,11,6,5).
Also continued fraction expansion of (13140908+sqrt(323139488118562))/24969762. - Bruno Berselli, Sep 09 2011

Crossrefs

Programs

  • Magma
    [4^n mod 19 : n in [0..80]]; // Vincenzo Librandi, Sep 09 2011
    
  • Mathematica
    PowerMod[4, Range[0, 100], 19]  (* or *)
    PadRight[{}, 100, {1, 4, 16, 7, 9, 17, 11, 6, 5}] (* Paolo Xausa, Mar 17 2024 *)
  • PARI
    a(n)=lift(Mod(4,19)^n) \\ Charles R Greathouse IV, Mar 22 2016

Formula

a(n+9) = a(n).
G.f.: (1 + 4*x + 16*x^2 + 7*x^3 + 9*x^4 + 17*x^5 + 11*x^6 + 6*x^7 + 5*x^8)/((1-x)*(1+x+x^2)*(1+x^3+x^6)). - Bruno Berselli, Sep 09 2011

A268271 Primes p such that there is a Fibonacci-type sequence (mod p) that begins with (1,b) and encounters all quadratic residues of p in the first (p-1)/2 iterations (for some b).

Original entry on oeis.org

11, 19, 29, 31, 59, 71, 79, 89, 101, 131, 179, 181, 191, 229, 239, 251, 271, 311, 349, 359, 379, 401, 419, 431, 439, 479, 491, 499, 509, 571, 599, 631, 659, 719, 739, 751, 761, 839, 941, 971, 1019, 1021, 1039, 1051, 1061, 1091, 1109, 1171, 1229, 1249, 1259, 1319, 1361, 1399
Offset: 1

Views

Author

Michel Marcus, Mar 02 2016

Keywords

Examples

			p=11 is a term since, modulo 11, the sequence 1, 4, 5, 9, 3 satisfies 5=4+1, 9=5+4, 3=9+5, 1=9+3, ..., with a period of (11-1)/2 = 5.
		

Crossrefs

Subsequence of A045468.
Cf. A003147 (similar sequence for a different period).
Cf. A168429, A070373 (examples of such Fibonacci-type sequences).

Programs

  • PARI
    findr(p) = {for (k=1, (p-1)/2, if ((k^2 % p) == 5, return(k)););}
    isok(p) = {if ((p % 2) && isprime(p), pm = p % 5; if ((pm == 1) || (pm == 4), rf = findr(p);(znorder(Mod((1+rf)/2, p)) == (p-1)/2) || (znorder(Mod((1-rf)/2, p)) == (p-1)/2);););}
Showing 1-4 of 4 results.