A070775 a(n) = Sum_{k=0..n} binomial(4*n,4*k).
1, 2, 72, 992, 16512, 261632, 4196352, 67100672, 1073774592, 17179738112, 274878431232, 4398044413952, 70368752566272, 1125899873288192, 18014398643699712, 288230375614840832, 4611686020574871552, 73786976286248271872, 1180591620751771041792, 18889465931341141901312
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..830
- Index entries for linear recurrences with constant coefficients, signature (12,64).
Crossrefs
Programs
-
Maple
a := n -> if n = 0 then 1 else 4^(n - 1)*(2*(-1)^n + 4^n) fi: seq(a(n), n = 0..19); # Peter Luschny, Jul 02 2022
-
Mathematica
Table[Sum[Binomial[4n,4k],{k,0,n}],{n,0,30}] (* or *) Join[{1}, LinearRecurrence[{12,64},{2,72},30]] (* Harvey P. Dale, Apr 24 2011 *)
-
PARI
a(n)=sum(k=0,n,binomial(4*n,4*k))
-
PARI
N=66; x='x+O('x^N); Vec((1-10*x-16*x^2)/((1-16*x)*(1+4*x))) \\ Seiichi Manyama, Mar 15 2019
Formula
a(n) = (1/2)*(-4)^n + (1/4)*16^n for n > 0.
Let b(n) = a(n) - 2^(4n)/4 then b(n+1) = 4*b(n) - Benoit Cloitre, May 27 2004
G.f.: (1 - 10*x - 16*x^2)/((1-16*x)*(1+4*x)). - Seiichi Manyama, Mar 15 2019
G.f.: ((cos(x) + cosh(x))/2)^2 = Sum_{n >= 0} a(n)*x(4*n)/(4*n)!. - Peter Bala, Jun 20 2022
Comments
. - Sean A. Irvine, Nov 09 2024