A070782
a(n) = Sum_{k=0..n} binomial(5*n,5*k).
Original entry on oeis.org
1, 2, 254, 6008, 215766, 6643782, 215492564, 6863694378, 219993856006, 7035859329512, 225191238869774, 7205634556190798, 230585685502492596, 7378682274243863442, 236118494435702913134, 7555784484021765207768, 241785184867484394069286, 7737125013254912900576822
Offset: 0
Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4), this sequence (b=5),
A070967 (b=6),
A094211 (b=7),
A070832 (b=8),
A094213 (b=9),
A070833 (b=10).
-
LinearRecurrence[{21,353,-32},{1,2,254},20] (* Harvey P. Dale, Jun 18 2023 *)
-
a(n)=sum(k=0,n,binomial(5*n,5*k))
-
Vec((1 - 19*x - 141*x^2) / ((1 - 32*x)*(1 + 11*x - x^2)) + O(x^20)) \\ Colin Barker, May 27 2019
A070832
a(n) = Sum_{k=0..n} binomial(8*n,8*k).
Original entry on oeis.org
1, 2, 12872, 1470944, 622116992, 125858012672, 36758056208384, 8793364151263232, 2334899414608412672, 586347560750962049024, 151652224498623981289472, 38612725801339748322639872, 9913426188311626771400228864
Offset: 0
Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4),
A070782 (b=5),
A070967 (b=6),
A094211 (b=7), this sequence (b=8),
A094213 (b=9),
A070833 (b=10).
-
Table[Sum[Binomial[8n,8k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Nov 25 2020 *)
-
a(n)=sum(k=0,n,binomial(8*n,8*k)); \\ Benoit Cloitre, May 27 2004
-
Vec((1 - 134*x - 20280*x^2 + 207296*x^3 + 8192*x^4) / ((1 - 16*x)*(1 - 256*x)*(1 + 136*x + 16*x^2)) + O(x^15)) \\ Colin Barker, May 27 2019
A070967
a(n) = Sum_{k=0..n} binomial(6*n,6*k).
Original entry on oeis.org
1, 2, 926, 37130, 2973350, 174174002, 11582386286, 729520967450, 47006639297270, 2999857885752002, 192222214478506046, 12295976362284182570, 787111112023373201990, 50370558298891875954002, 3223838658635388303336206, 206322355109994528871954490
Offset: 0
Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 16 2002
- Matthijs Coster, Supercongruences, Thesis, Jun 08, 1988.
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4),
A070782 (b=5), this sequence (b=6),
A094211 (b=7),
A070832 (b=8),
A094213 (b=9),
A070833 (b=10).
-
Table[Sum[Binomial[6n,6k],{k,0,n}],{n,0,20}] (* or *) LinearRecurrence[ {38,1691,-1728},{1,2,926,37130},30] (* Harvey P. Dale, Jun 19 2021 *)
-
a(n)=sum(k=0,n,binomial(6*n,6*k))
-
a(n)=if(n<0,0,(2*(-27)^n+2+64^n+0^n)/6)
-
a(n)=if(n<0,0,polsym(x*(x-64)*(x+27)^2*(x-1)^2,n)[n+1]/6)
A070833
a(n) = Sum_{k=0..n} binomial(10*n,10*k).
Original entry on oeis.org
1, 2, 184758, 60090032, 139541849878, 94278969044262, 126648421364527548, 111019250117021378442, 125257104438594491956518, 121088185204450642433930072, 128442558588779813655233443038, 128767440665677943753184267342902
Offset: 0
Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4),
A070782 (b=5),
A070967 (b=6),
A094211 (b=7),
A070832 (b=8),
A094213 (b=9), this sequence (b=10). Cf.
A000032.
-
a(n) = sum(k=0, n, binomial(10*n, 10*k)); \\ Michel Marcus, Mar 15 2019
-
Vec((1 - 520*x - 404083*x^2 + 37605988*x^3 + 117888625*x^4 - 320000*x^5) / ((1 - 1024*x)*(1 - 123*x + x^2)*(1 + 625*x + 3125*x^2)) + O(x^15)) \\ Colin Barker, Mar 15 2019
A094211
a(n) = Sum_{k=0..n} binomial(7*n,7*k).
Original entry on oeis.org
1, 2, 3434, 232562, 42484682, 4653367842, 644032289258, 79450506979090, 10353832741654602, 1313930226050847938, 168883831255263816554, 21573903987107973878962, 2764126124873404346104778, 353643666623193292098680930, 45276535087893983968685884906
Offset: 0
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4),
A070782 (b=5),
A070967 (b=6), this sequence (b=7),
A070832 (b=8),
A094213 (b=9),
A070833 (b=10).
-
A094211:=n->add(binomial(7*n,7*k), k=0..n): seq(A094211(n), n=0..20); # Wesley Ivan Hurt, Feb 16 2017
-
Table[Sum[Binomial[7n,7k],{k,0,n}],{n,0,20}] (* or *) LinearRecurrence[ {71,7585,-36991,-128},{1,2,3434,232562},20] (* Harvey P. Dale, May 06 2012 *)
-
a(n)=sum(k=0,n,binomial(7*n,7*k))
A094213
a(n) = Sum_{k=0..n} binomial(9*n,9*k).
Original entry on oeis.org
1, 2, 48622, 9373652, 9263421862, 3433541316152, 2140802758677844, 984101481334553024, 536617781178725122150, 265166261617029717011822, 138567978655457801631498052, 70126939586658252408697345838, 36144812798331420987905742371116
Offset: 0
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4),
A070782 (b=5),
A070967 (b=6),
A094211 (b=7),
A070832 (b=8), this sequence (b=9),
A070833 (b=10).
-
Table[Sum[Binomial[9n,9k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Jul 14 2019 *)
-
a(n)=sum(k=0,n,binomial(9*n,9*k))
-
Vec((1 - 263*x - 91731*x^2 + 3035380*x^3 + 1547833*x^4) / ((1 + x)*(1 - 512*x)*(1 + 246*x - 13605*x^2 + x^3)) + O(x^15)) \\ Colin Barker, May 27 2019
A090407
a(n) = Sum_{k = 0..n} C(4*n + 1, 4*k).
Original entry on oeis.org
1, 6, 136, 2016, 32896, 523776, 8390656, 134209536, 2147516416, 34359607296, 549756338176, 8796090925056, 140737496743936, 2251799780130816, 36028797153181696, 576460751766552576, 9223372039002259456
Offset: 0
-
Table[Sum[Binomial[4n+1,4k],{k,0,n}],{n,0,30}] (* or *) LinearRecurrence[ {12,64},{1,6},30] (* Harvey P. Dale, Jan 19 2012 *)
A090408
a(n) = Sum_{k=0..n} binomial(4n+3,4k).
Original entry on oeis.org
1, 36, 496, 8256, 130816, 2098176, 33550336, 536887296, 8589869056, 137439215616, 2199022206976, 35184376283136, 562949936644096, 9007199321849856, 144115187807420416, 2305843010287435776, 36893488143124135936, 590295810375885520896, 9444732965670570950656
Offset: 0
-
Table[Sum[Binomial[4n+3,4k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Feb 12 2020 *)
A177808
Triangle T(n,m) = binomial(4*n, 4*m), 0 <= m <= n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 70, 1, 1, 495, 495, 1, 1, 1820, 12870, 1820, 1, 1, 4845, 125970, 125970, 4845, 1, 1, 10626, 735471, 2704156, 735471, 10626, 1, 1, 20475, 3108105, 30421755, 30421755, 3108105, 20475, 1, 1, 35960, 10518300, 225792840, 601080390, 225792840, 10518300, 35960, 1, 1, 58905, 30260340, 1251677700, 7307872110, 7307872110, 1251677700, 30260340, 58905, 1
Offset: 0
1;
1, 1;
1, 70, 1;
1, 495, 495, 1;
1, 1820, 12870, 1820, 1;
1, 4845, 125970, 125970, 4845, 1;
1, 10626, 735471, 2704156, 735471, 10626, 1;
1, 20475, 3108105, 30421755, 30421755, 3108105, 20475, 1;
1, 35960, 10518300, 225792840, 601080390, 225792840, 10518300, 35960, 1;
1, 58905, 30260340, 1251677700, 7307872110, 7307872110, 1251677700,30260340, 58905, 1;
1, 91390, 76904685, 5586853480, 62852101650, 137846528820, 62852101650, 5586853480, 76904685, 91390, 1;
-
A177808 := proc(n,m) binomial(4*n,4*m) ; end proc: # R. J. Mathar, Dec 13 2010
-
t[n_, m_] = Binomial[n, 4*m];
Table[Table[t[n, m], {m, 0, Floor[n/4]}], {n, 0, 40, 4}];
Flatten[%]
A139459
Triangle read by rows: binomial(3*n,3*k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 20, 1, 1, 84, 84, 1, 1, 220, 924, 220, 1, 1, 455, 5005, 5005, 455, 1, 1, 816, 18564, 48620, 18564, 816, 1, 1, 1330, 54264, 293930, 293930, 54264, 1330, 1, 1, 2024, 134596, 1307504, 2704156, 1307504, 134596, 2024, 1, 1, 2925, 296010, 4686825, 17383860, 17383860, 4686825, 296010, 2925, 1
Offset: 0
First few rows of the triangle are:
[0] 1;
[1] 1, 1;
[2] 1, 20, 1;
[3] 1, 84, 84, 1;
[4] 1, 220, 924, 220, 1;
[5] 1, 455, 5005, 5005, 455, 1;
[6] 1, 816, 18564, 48620, 18564, 816, 1;
...
Row 5 = (1, 220, 924, 220, 1) = ConvOffs transform of (1, 20, 84, 220); where A006566 = (0, 1, 20, 84, 220, 455, ...).
-
Table[Binomial[3*n, 3*k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 01 2025 *)
Showing 1-10 of 19 results.
Comments