A070824 Number of divisors of n which are > 1 and < n (nontrivial divisors).
0, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 2, 2, 3, 0, 4, 0, 4, 2, 2, 0, 6, 1, 2, 2, 4, 0, 6, 0, 4, 2, 2, 2, 7, 0, 2, 2, 6, 0, 6, 0, 4, 4, 2, 0, 8, 1, 4, 2, 4, 0, 6, 2, 6, 2, 2, 0, 10, 0, 2, 4, 5, 2, 6, 0, 4, 2, 6, 0, 10, 0, 2, 4, 4, 2, 6, 0, 8, 3, 2, 0, 10, 2, 2
Offset: 1
Examples
a(12) = 4 with the nontrivial divisors 2,3,4,6. a(24) = 6 = card({{2,12},{3,8},{4,6},{6,4},{8,3},{12,2}}). - _Peter Luschny_, Nov 14 2011
References
- George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading 1976; reprinted, Cambridge University Press, Cambridge, 1984, 1998.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Rahul Chhimpa and Avinash Chand Yadav, Scaling behavior in the number theoretic division model of self-organized criticality, arXiv:2410.05699 [cond-mat.stat-mech], 2024. See p. 2.
- Arnold Knopfmacher and Michael Mays, Ordered and Unordered Factorizations of Integers, The Mathematica Journal, Vol 10 (1), 2006 (Wayback Machine link); ResearchGate link.
Crossrefs
Programs
-
Haskell
a070824 n = if n == 1 then 0 else length $ tail $ a027751_row n -- Reinhard Zumkeller, Dec 03 2014
-
Maple
0, seq(numtheory[tau](n)-2,n=2..100); # Augustine O. Munagi, Mar 31 2005
-
Mathematica
Join[{0},Rest[DivisorSigma[0,Range[90]]-2]] (* Harvey P. Dale, Jun 23 2012 *) a[ n_] := SeriesCoefficient[ Sum[x^(2 k)/(1 - x^k), {k, 2, n/2}], {x, 0, n}]; (* Michael Somos, Jun 24 2019 *)
-
PARI
{a(n) = if( n<1, 0, my(v = vector(n, i, i>1)); dirmul(v, v)[n])}; /* Michael Somos, Jun 24 2019 */
-
PARI
apply( A070824(n)=numdiv(n+(n<2))-2, [1..90]) \\ M. F. Hasler, Oct 11 2019
-
Python
from sympy import divisor_count def A070824(n): return 0 if n == 1 else divisor_count(n)-2 # Chai Wah Wu, Jun 03 2022
Formula
a(n) = d(n)-2, for n>=2, where d(n) is the number-of-divisors function. E.g., a(12) = 4 because 12 has 4 ordered factorizations into two factors: 2*6, 6*2, 3*4, 4*3. - Augustine O. Munagi, Mar 31 2005
G.f.: Sum_{k>=2} x^(2k)/(1-x^k). - Jon Perry, Nov 08 2008
Dirichlet generating function: (zeta(s)-1)^2. - Mats Granvik May 25 2013
Sum_{k=1..n} a(k) ~ n*log(n) + (2*gamma - 3)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
a(n) = abs( Sum_{d|n} (-1)^prime(d) ), n >= 2 with a(1) = 0. - Wesley Ivan Hurt, Jun 22 2024
a(n) = Sum_{k=2..n-1} floor(n/k) - floor((n-1)/k), see Chhimpa and Yadav. - Stefano Spezia, Oct 13 2024
Extensions
a(1)=0 added by Peter Luschny, Nov 14 2011
Several minor edits by M. F. Hasler, Oct 14 2019
Comments