A070960 a(1) = 1; a(n) = n!*(3/2) for n>=2.
1, 3, 9, 36, 180, 1080, 7560, 60480, 544320, 5443200, 59875200, 718502400, 9340531200, 130767436800, 1961511552000, 31384184832000, 533531142144000, 9603560558592000, 182467650613248000, 3649353012264960000, 76636413257564160000, 1686001091666411520000, 38778025108327464960000
Offset: 1
Examples
a(5) = 180 because the greatest number we can obtain using 1, 2, 3, 4, 5 is 180 which is (1+2)*3*4*5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..400
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 4.
- Index entries for similar sequences.
Programs
-
Haskell
a070960 n = if n == 1 then 1 else 3 * a000142 n `div` 2 a070960_list = map (flip div 2) fs where fs = 3 : zipWith (*) [2..] fs -- Reinhard Zumkeller, Aug 31 2014
-
Mathematica
s=3;lst={1, s};Do[s+=n*s+s;AppendTo[lst, s], {n, 1, 5!, 1}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *) Join[{1},(3*Range[2,20]!)/2] (* Harvey P. Dale, Jun 15 2022 *)
-
PARI
a(n) = if (n==1, 1, n!*3/2); \\ Michel Marcus, Dec 03 2022
Formula
E.g.f.: x*(2+x)/(1-x)/2. - Vladeta Jovovic, Dec 15 2002
a(n) = A245334(n,n-2), n > 1. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=1} 1/a(n) = (2*e-1)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2/(3*e). (End)
Extensions
Edited by N. J. A. Sloane, Jul 22 2009
Comments