A076365 Duplicate of A070971.
3, 4, 15, 6, 105, 30, 1155, 770, 36465, 210, 15015, 6006
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
g(6)=4 because the gap between 1 and 5, both being relatively prime to 6, is maximal and 5-1 = 4. g(7)=2, because the numbers relatively prime to 7 are 1,2,3,4,5,6,8,9,10,..., and the biggest gap is 2. Similarly a(p) = 2 for any prime p. - _N. J. A. Sloane_, Sep 08 2012
a048669 n = maximum $ zipWith (-) (tail ts) ts where ts = a038566_row n ++ [n + 1] -- Reinhard Zumkeller, Oct 01 2012
g[n_] := Module[{L = 1, m = 1}, For[k = 2, k <= n+1, k++, If[GCD[k, n] == 1, If[L+m < k, m = k-L]; L = k]]; m]; Table[g[n], {n, 1, 105}] (* Jean-François Alcover, Sep 03 2013, after M. F. Hasler *) Table[Max[Differences[Select[Range[110],CoprimeQ[#,n]&]]],{n,110}] (* Harvey P. Dale, Jan 10 2022 *)
A048669(n)=my(L=1,m=1);for(k=2,n+1,gcd(k,n)>1 && next;L+mM. F. Hasler, Sep 08 2012
A048864(x) = 13: S = {}, a(13) = 0; A048864(x) = 16: S = {144}, a(16) = 1; A048864(x) = 22: S = {57,92}, a(22) = 2; A048864(x) = 7: S = {13,34,50}, a(7) = 3; A048864(x) = 4: S = {15,22,54,84}, a(4) = 4; A048864(x) = 15: S = {35,64,68,156,240}, a(15) = 5; A048864(x) = 2: S = {5,10,14,20,42,60}, a(2) = 6; A048864(x) = 6: S = {11,21,32,40,72,78,210}, a(6) = 7; A048864(x) = 78: S = {133,177,268,440,490,552,870,990}, a(78) = 8; A048864(x) = 1: S = {1,2,3,4,6,8,12,18,24,30}, a(1) = 10; See A048597.
listn(nn) = {my(v = vector(10^5, n, eulerphi(n) - (primepi(n) - omega(n)))); vector(nn, k, if (#(w=Vec(select(x->(x==k), v, 1))) == 0, 0, #w));} \\ Michel Marcus, Feb 23 2020
Comments