cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071233 a(n) = 2*(n-1)*(n^2 + 1).

Original entry on oeis.org

0, 10, 40, 102, 208, 370, 600, 910, 1312, 1818, 2440, 3190, 4080, 5122, 6328, 7710, 9280, 11050, 13032, 15238, 17680, 20370, 23320, 26542, 30048, 33850, 37960, 42390, 47152, 52258, 57720, 63550, 69760, 76362, 83368, 90790, 98640, 106930, 115672, 124878, 134560
Offset: 1

Views

Author

N. J. A. Sloane, Jun 11 2002

Keywords

Comments

For n > 1, a(n) is the sum of the numbers appearing along the outside border of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - Wesley Ivan Hurt, May 13 2021

Examples

			From _Wesley Ivan Hurt_, May 13 2021: (Start)
Given the 4 X 4 square array below,
  [  1   2   3   4 ]
  [  5   6   7   8 ]
  [  9  10  11  12 ]
  [ 13  14  15  16 ]
the sum of the elements along the outside border is 1+2+3+4+8+12+16+15+14+13+9+5 = 102. Thus a(4) = 102. (End)
		

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Programs

  • Magma
    [2*(n-1)*(n^2+1): n in [1..50]]; // Vincenzo Librandi, Jun 14 2011
    
  • Mathematica
    Table[2(n-1)(n^2+1),{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,10,40,102},50] (* Harvey P. Dale, Jun 27 2021 *)
  • SageMath
    def A071233(n): return 2*(n-1)*(n^2+1)
    [A071233(n) for n in range(1,51)] # G. C. Greubel, Aug 05 2024

Formula

a(n) = 2*A062158(n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: 2*x*(5+x^2)/(1 - x)^4 - Harvey P. Dale, Jun 27 2021
E.g.f.: 2*exp(x)*x*(5 + 5*x + x^2). - Stefano Spezia, Apr 22 2023
a(n) = (n-1)*A005893(n). - G. C. Greubel, Aug 05 2024