A092417 Duplicate of A071543.
1, 3, -4, 12, 144, 576, -7104, 45248, 450432, 2240512, 5292544, -88076288, -62210048
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Flatten[{1, Table[Det[Table[PartitionsP[i+j], {i, n}, {j, n}]], {n, 1, 100}]}]
Flatten[{1, Table[Det[Table[PartitionsQ[i+j], {i, n}, {j, n}]], {n, 1, 100}]}]
Array begins: n\k| 1 2 3 4 5 6 7 8 ---+-------------------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 1 | 2 3 5 7 11 13 17 19 2 | 1 -4 6 -30 18 -42 30 22 3 | -2 12 -72 72 -72 -96 -188 -480 4 | 0 144 0 288 144 488 1800 2280 5 | 288 576 1152 -1248 -112 4432 -1552 15952 6 | -1728 -7104 -11712 -11360 -10816 29952 -89152 -57088 7 | -26240 45248 21184 -103168 -43264 -605440 -379264 271552 8 | 222272 450432 1068800 2022912 3927552 5399552 6315904 6861312 T(3,2) = 12, the determinant of the Hankel matrix [3 5 7] [5 7 11] [7 11 13].
from sympy import Matrix,prime,nextprime def A350200(n,k): p = [prime(k)] if n > 0 else [] for i in range(2*n-2): p.append(nextprime(p[-1])) return Matrix(n,n,lambda i,j:p[i+j]).det()