cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A282516 Number T(n,k) of k-element subsets of [n] having a prime element sum; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 2, 4, 1, 0, 0, 3, 5, 2, 2, 0, 0, 3, 7, 6, 4, 2, 0, 0, 4, 9, 10, 11, 7, 1, 0, 0, 4, 11, 18, 21, 13, 7, 2, 0, 0, 4, 14, 26, 34, 31, 20, 7, 3, 0, 0, 4, 18, 37, 53, 59, 51, 32, 11, 2, 0, 0, 5, 21, 47, 82, 110, 117, 85, 35, 12, 2, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2017

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  0, 0;
  0, 1,  1;
  0, 2,  2,  0;
  0, 2,  4,  1,  0;
  0, 3,  5,  2,  2,   0;
  0, 3,  7,  6,  4,   2,   0;
  0, 4,  9, 10, 11,   7,   1,  0;
  0, 4, 11, 18, 21,  13,   7,  2,  0;
  0, 4, 14, 26, 34,  31,  20,  7,  3,  0;
  0, 4, 18, 37, 53,  59,  51, 32, 11,  2, 0;
  0, 5, 21, 47, 82, 110, 117, 85, 35, 12, 2, 0;
  ...
		

Crossrefs

Row sums give A127542.
Main diagonal gives A185012.
First lower diagonal gives A282518.
T(2n,n) gives A282517.

Programs

  • Maple
    b:= proc(n, s) option remember; expand(`if`(n=0,
          `if`(isprime(s), 1, 0), b(n-1, s)+x*b(n-1, s+n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..16);
  • Mathematica
    b[n_, s_] := b[n, s] = Expand[If[n==0, If[PrimeQ[s], 1, 0], b[n-1, s] + x*b[n-1, s+n]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
    Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Mar 21 2017, translated from Maple *)

A292918 Let A_n be a square n X n matrix with entries A_n(i,j)=1 if i+j is prime, and A_n(i,j)=0 otherwise. Then a(n) counts the 1's in A_n.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 19, 23, 29, 37, 43, 51, 57, 63, 71, 81, 89, 97, 105, 113, 123, 135, 145, 157, 169, 181, 195, 209, 221, 235, 249, 263, 277, 293, 309, 327, 345, 363, 381, 401, 419, 439, 457, 475, 495, 515, 533, 551, 571, 591, 613, 637, 659, 683, 709, 735
Offset: 1

Views

Author

Anthony Hernandez, Sep 26 2017

Keywords

Comments

Bertrand's postulate guarantees for every integer n the existence of at least one prime q with n < q < 2n. Equivalently, A(n) has at least one skew diagonal below the main skew diagonal whose entries will be equal to 1.

Examples

			         |1 1 0 1 0|
         |1 0 1 0 1|
   A_5 = |0 1 0 1 0| and so a(5) = 11.
         |1 0 1 0 0|
         |0 1 0 0 0|
		

Crossrefs

Programs

  • Magma
    sol:=[]; for n in [1..56] do k:=0; for i,j in [1..n] do if IsPrime(i+j) then k:=k+1; end if; end for; Append(~sol,k);end for; sol; // Marius A. Burtea, Aug 29 2019
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1,
          a(n-1)+2*(pi(2*n-1)-pi(n)))
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 29 2017
  • Mathematica
    A[n_] := Table[Boole[PrimeQ[i + j]], {i, 1, n}, {j, 1, n}]; a[n_] := Count[Flatten[A[n]], 1];
    (* or, after Alois P. Heinz (200 times faster): *)
    a[1] = 1; a[n_] := a[n] = a[n-1] + 2(PrimePi[2n-1] - PrimePi[n]);
    Array[a, 80] (* Jean-François Alcover, Sep 29 2017 *)
  • PARI
    first(n) = {my(res = vector(n), pn = 0, p2n1 = 1); res[1] = 1; for(i = 2, n,
    if(isprime(i), pn++); if(isprime(2*i-1), p2n1++); res[i] = res[i-1] + 2*(p2n1 - pn)); res} \\ David A. Corneth, Aug 31 2019
  • Python
    from sympy import primepi
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return 1 if n==1 else a(n - 1) + 2*(primepi(2*n - 1) - primepi(n))
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Dec 13 2017, after Alois P. Heinz
    

Formula

From Alois P. Heinz, Sep 29 2017: (Start)
a(n) = a(n-1) + 2 * (pi(2*n-1) - pi(n)) for n > 1, a(1) = 1.
a(n) = A069879(n) + 1 = 2*A071917(n) + 1. (End)
a(n) = Sum_{i=1..n} (pi(n+i) - pi(i)), where pi = A000720. - Ridouane Oudra, Aug 29 2019
a(n) = Sum_{p <= 2n+1, p prime} min(p-1, 2n+1-p). - Ridouane Oudra, Oct 30 2023

A069879 Number of pairs {i,j} with i different from j; 1<=i<=n; 1<= j <=n such that i+j is a prime number.

Original entry on oeis.org

0, 2, 4, 8, 10, 14, 18, 22, 28, 36, 42, 50, 56, 62, 70, 80, 88, 96, 104, 112, 122, 134, 144, 156, 168, 180, 194, 208, 220, 234, 248, 262, 276, 292, 308, 326, 344, 362, 380, 400, 418, 438, 456, 474, 494, 514, 532, 550, 570, 590, 612, 636, 658, 682, 708, 734
Offset: 1

Views

Author

Santi Spadaro, May 04 2002

Keywords

Crossrefs

Partial sums of 2*A060715(n).

Programs

Formula

a(n) = 2 * A071917(n). - Alois P. Heinz, Sep 29 2017

A140199 a(n) = the number of pairs of (not necessarily distinct) positive integers j and k where j <= n and k <= n such that k+j is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 10, 12, 15, 19, 22, 26, 29, 32, 36, 41, 45, 49, 53, 57, 62, 68, 73, 79, 85, 91, 98, 105, 111, 118, 125, 132, 139, 147, 155, 164, 173, 182, 191, 201, 210, 220, 229, 238, 248, 258, 267, 276, 286, 296, 307, 319, 330, 342, 355, 368, 382, 396, 409, 422
Offset: 1

Views

Author

Leroy Quet, Jun 15 2008

Keywords

Examples

			For n = 4 there are 5 pairs of positive integers, each <= n=4, that sum to a prime: 1+1=2, 1+2=3, 2+3=5, 1+4=5 and 3+4=7.
		

Crossrefs

Programs

Formula

a(n) = sum{k=1 to n} A108954(k). (A108954(n) = pi(2n)-pi(n), where pi(n) is the number of primes that are <= n). a(n) = A071917(n)+1.

Extensions

More terms from R. J. Mathar, Jun 19 2008
Showing 1-4 of 4 results.