cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071954 a(n) = 4*a(n-1) - a(n-2) - 4, with a(0) = 2, a(1) = 4.

Original entry on oeis.org

2, 4, 10, 32, 114, 420, 1562, 5824, 21730, 81092, 302634, 1129440, 4215122, 15731044, 58709050, 219105152, 817711554, 3051741060, 11389252682, 42505269664, 158631825970, 592022034212, 2209456310874, 8245803209280, 30773756526242, 114849222895684
Offset: 0

Views

Author

Lekraj Beedassy, Jun 25 2002

Keywords

Comments

a(n) gives the side of a cube having a square number of cubes in its two outermost layers, i.e., solutions p to the equation p^3 - (p - 4)^3 = q^2. The corresponding q is given by 4*A001075(n).

Examples

			G.f. = 2 + 4*x + 10*x^2 + 32*x^3 + 114*x^4 + 420*x^5 + 1562*x^6 + ...
		

References

  • M. E. Larsen, "Four Cubes" in Puzzler's Tribute, Ed. D. Wolfe & T. Rodgers, pp. 69-70, A. K. Peters, MA, 2002

Crossrefs

Equals A052530(n) + 2, n > 0.

Programs

  • GAP
    a:=[2,4,10];; for n in [4..30] do a[n]:=5*a[n-1]-5*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 25 2019
  • Haskell
    a071954 n = a071954_list !! n
    a071954_list = 2 : 4 : zipWith (-)
                   (map ((4 *) . pred) (tail a071954_list)) a071954_list
    -- Reinhard Zumkeller, Aug 11 2011
    
  • Magma
    I:=[2,4,10]; [n le 3 select I[n] else 5*Self(n-1) -5*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 25 2019
    
  • Mathematica
    a[n_]:= a[n] = 4*a[n-1] -a[n-2] -4; a[0]=2; a[1]=4; Table[a[n], {n,0,30}]
    LinearRecurrence[{5,-5,1},{2,4,10},30] (* Harvey P. Dale, May 05 2011 *)
  • PARI
    Vec((2-6*x)/(1-5*x+5*x^2-x^3)+O(x^30)) \\ Charles R Greathouse IV, Feb 09 2012
    
  • PARI
    {a(n) = my(w=quadgen(12)); simplify( 2 + ((2+w)^n - (2-w)^n) / w)}; /* Michael Somos, Nov 03 2016 */
    
  • Sage
    (2*(1-3*x)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
    

Formula

a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3) for n > 2, with a(0) = 2, a(1) = 4, a(2) = 10.
G.f.: 2*(1 - 3*x)/((1-x)*(1 -4*x +x^2)). - Harvey P. Dale, May 05 2011
a(n) = (2 + (-(2 - sqrt(3))^n + (2 + sqrt(3))^n)/sqrt(3)). - Colin Barker, Nov 03 2016
A263942(n) = -a(-1-n) for all n in Z. - Michael Somos, Nov 03 2016
E.g.f.: (2/3)*(3*exp(x) + sqrt(3)*exp(2*x)*sinh(sqrt(3)*x)). - Franck Maminirina Ramaharo, Nov 14 2018
From G. C. Greubel, Feb 25 2019: (Start)
a(n) = 2*A072110(n).
a(n) = 2*(1 - (-i)^(n+1)*F(n, 4*i)), where i=sqrt(-1) and F(n,x) is the Fibonacci polynomial. (End)

Extensions

Edited by Robert G. Wilson v, Jun 27 2002