A072265 Variant of Lucas numbers: a(n) = a(n-1) + 4*a(n-2) starting with a(0)=2 and a(1)=1.
2, 1, 9, 13, 49, 101, 297, 701, 1889, 4693, 12249, 31021, 80017, 204101, 524169, 1340573, 3437249, 8799541, 22548537, 57746701, 147940849, 378927653, 970691049, 2486401661, 6369165857, 16314772501, 41791435929, 107050525933, 274216269649, 702418373381
Offset: 0
References
- Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", Wiley, 2001, p. 471.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Lucas sequence
- Index entries for linear recurrences with constant coefficients, signature (1,4).
Crossrefs
Cf. A006131.
Programs
-
GAP
a:=[2,1];; for n in [3..30] do a[n]:=a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Jan 15 2020
-
Magma
I:=[2,1]; [n le 2 select I[n] else Self(n-1) + 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 15 2020
-
Maple
a:= n-> (Matrix([[1,2]]). Matrix([[1,1], [4,0]])^n)[1,2]: seq(a(n), n=0..32); # Alois P. Heinz, Aug 15 2008 a := n -> 2*(2*I)^n*ChebyshevT(n, -I/4): seq(simplify(a(n)), n = 0..29); # Peter Luschny, Dec 03 2023
-
Mathematica
CoefficientList[Series[(2-x)/(1-x-4*x^2), {x,0,30}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *) Table[2^n*LucasL[n, 1/2], {n,0,30}] (* G. C. Greubel, Jan 15 2020 *)
-
PARI
polsym(x^2-x-4, 44)
-
Sage
[lucas_number2(n,1,-4) for n in range(0, 27)] # Zerinvary Lajos, Apr 30 2009
Formula
G.f.: (2-x)/(1-x-4*x^2). - Gary W. Adamson, Jul 02 2003
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x + 17*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
a(n) = 2^n * Lucas(n, 1/2). - G. C. Greubel, Jan 15 2020
Extensions
Edited and extended by Henry Bottomley, Sep 03 2002
Comments