A072670 Number of ways to write n as i*j + i + j, 0 < i <= j.
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 0, 3, 0, 2, 1, 1, 1, 4, 0, 1, 1, 3, 0, 3, 0, 2, 2, 1, 0, 4, 1, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 5, 0, 1, 2, 3, 1, 3, 0, 2, 1, 3, 0, 5, 0, 1, 2, 2, 1, 3, 0, 4, 2, 1, 0, 5, 1, 1, 1, 3, 0, 5, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 3, 0, 3, 3
Offset: 0
Keywords
Examples
a(11)=2: 11 = 1*5 + 1 + 5 = 2*3 + 2 + 3. From _Daniel Forgues_, Sep 20 2011 (Start) Number of nontrivial factorizations of n+1 in two factors: 0 for the unit 1 and prime numbers 1 for a square: n^2 = n*n 1 for 6 (2*3), 10 (2*5), 14 (2*7), 15 (3*5) 1 for a cube: n^3 = n*n^2 2 for 12 (2*6, 3*4), for 18 (2*9, 3*6) (End)
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Joseph W. Andrushkiw, Roman I. Andrushkiw and Clifton E. Corzatt, Representations of Positive Integers as Sums of Arithmetic Progressions, Mathematics Magazine, Vol. 49, No. 5 (Nov., 1976), pp. 245-248.
- M. A. Nyblom and C. Evans, On the enumeration of partitions with summands in arithmetic progression, Australian Journal of Combinatorics, Vol. 28 (2003), pp. 149-159.
- Vladimir Shevelev, Representation of positive integers by the form x1...xk+x1+...+xk, arXiv:1508.03970 [math.NT], 2015.
Programs
-
Maple
0, seq(ceil(numtheory:-tau(n+1)/2)-1, n=1..100); # Robert Israel, Aug 04 2015
-
Mathematica
p2[n_] := 1/2 (Length[Divisors[n]] - 2 + ((-1)^(Length[Divisors[n]] + 1) + 1)/2); Table[p2[n + 1], {n, 0, 104}] (* N-E. Fahssi, Feb 01 2008 *) Table[Ceiling[DivisorSigma[0, n + 1]/2] - 1, {n, 0, 104}] (* Arkadiusz Wesolowski, Nov 18 2012 *)
-
PARI
is_ok(k,i,j)=0=i&&k===i*j+i+j; first(m)=my(v=vector(m,z,0));for(l=1,m,for(j=1,l,for(i=1,j,if(is_ok(l,i,j),v[l]++))));concat([0],v); /* Anders Hellström, Aug 04 2015 */
-
PARI
a(n)=(numdiv(n+1)+issquare(n+1))/2-1 \\ Charles R Greathouse IV, Jul 14 2017
Formula
a(n) = A038548(n+1) - 1.
From N-E. Fahssi, Feb 01 2008: (Start)
a(n) = p2(n+1), where p2(n) = (1/2)*(d(n) - 2 + ((-1)^(d(n)+1)+1)/2); d(n) is the number of divisors of n: A000005.
G.f.: Sum_{n>=1} a(n) x^n = 1/x Sum_{k>=2} x^(k^2)/(1-x^k). (End)
lim_{n->infinity} a(A002110(n)-1) = infinity. - Vladimir Shevelev, Aug 04 2015
a(n) = A161840(n+1)/2. - Omar E. Pol, Feb 27 2019
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 3) / 2, where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 14 2024
Comments