cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A072671 Least m which can be written as i*j+i+j in n different ways: A072670(m)=n.

Original entry on oeis.org

0, 3, 11, 23, 35, 59, 191, 119, 179, 239, 575, 359, 1295, 899, 719, 839, 9215, 1259, 786431, 1679, 2879, 15359, 3599, 2519, 6479, 61439, 6299, 6719, 2359295, 5039, 3221225471, 7559, 46079, 983039, 25919, 10079, 206158430207, 32399, 184319, 15119, 44099, 20159, 5308415, 107519, 25199, 2985983, 9663676415, 27719, 233279, 45359
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 30 2002

Keywords

Comments

a(n) = A038549(n+1) - 1.

Crossrefs

A006093 a(n) = prime(n) - 1.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238, 240, 250, 256, 262, 268, 270
Offset: 1

Views

Author

Keywords

Comments

These are also the numbers that cannot be written as i*j + i + j (i,j >= 1). - Rainer Rosenthal, Jun 24 2001; Henry Bottomley, Jul 06 2002
The values of k for which Sum_{j=0..n} (-1)^j*binomial(k, j)*binomial(k-1-j, n-j)/(j+1) produces an integer for all n such that n < k. Setting k=10 yields [0, 1, 4, 11, 19, 23, 19, 11, 4, 1, 0] for n = [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], so 10 is in the sequence. Setting k=3 yields [0, 1, 1/2, 1/2] for n = [-1, 0, 1, 2], so 3 is not in the sequence. - Dug Eichelberger (dug(AT)mit.edu), May 14 2001
n such that x^n + x^(n-1) + x^(n-2) + ... + x + 1 is irreducible. - Robert G. Wilson v, Jun 22 2002
Records for Euler totient function phi.
Together with 0, n such that (n+1) divides (n!+1). - Benoit Cloitre, Aug 20 2002; corrected by Charles R Greathouse IV, Apr 20 2010
n such that phi(n^2) = phi(n^2 + n). - Jon Perry, Feb 19 2004
Numbers having only the trivial perfect partition consisting of a(n) 1's. - Lekraj Beedassy, Jul 23 2006
Numbers n such that the sequence {binomial coefficient C(k,n), k >= n } contains exactly one prime. - Artur Jasinski, Dec 02 2007
Record values of A143201: a(n) = A143201(A001747(n+1)) for n > 1. - Reinhard Zumkeller, Aug 12 2008
From Reinhard Zumkeller, Jul 10 2009: (Start)
The first N terms can be generated by the following sieving process:
start with {1, 2, 3, 4, ..., N - 1, N};
for i := 1 until SQRT(N) do
(if (i is not striked out) then
(for j := 2 * i + 1 step i + 1 until N do
(strike j from the list)));
remaining numbers = {a(n): a(n) <= N}. (End)
a(n) = partial sums of A075526(n-1) = Sum_{1..n} A075526(n-1) = Sum_{1..n} (A008578(n+1) - A008578(n)) = Sum_{1..n} (A158611(n+2) - A158611(n+1)) for n >= 1. - Jaroslav Krizek, Aug 04 2009
A171400(a(n)) = 1 for n <> 2: subsequence of A171401, except for a(2) = 2. - Reinhard Zumkeller, Dec 08 2009
Numerator of (1 - 1/prime(n)). - Juri-Stepan Gerasimov, Jun 05 2010
Numbers n such that A002322(n+1) = n. This statement is stronger than repeating the property of the entries in A002322, because it also says in reciprocity that this sequence here contains no numbers beyond the Carmichael numbers with that property. - Michel Lagneau, Dec 12 2010
a(n) = A192134(A095874(A000040(n))); subsequence of A192133. - Reinhard Zumkeller, Jun 26 2011
prime(a(n)) + prime(k) < prime(a(k) + k) for at least one k <= a(n): A212210(a(n),k) < 0. - Reinhard Zumkeller, May 05 2012
Except for the first term, numbers n such that the sum of first n natural numbers does not divide the product of first n natural numbers; that is, n*(n + 1)/2 does not divide n!. - Jayanta Basu, Apr 24 2013
BigOmega(a(n)) equals BigOmega(a(n)*(a(n) + 1)/2), where BigOmega = A001222. Rationale: BigOmega of the product on the right hand side factorizes as BigOmega(a/2) + Bigomega(a+1) = BigOmega(a/2) + 1 because a/2 and a + 1 are coprime, because BigOmega is additive, and because a + 1 is prime. Furthermore Bigomega(a/2) = Bigomega(a) - 1 because essentially all 'a' are even. - Irina Gerasimova, Jun 06 2013
Record values of A060681. - Omar E. Pol, Oct 26 2013
Deficiency of n-th prime. - Omar E. Pol, Jan 30 2014
Conjecture: All the sums Sum_{k=s..t} 1/a(k) with 1 <= s <= t are pairwise distinct. In general, for any integers d >= -1 and m > 0, if Sum_{k=i..j} 1/(prime(k)+d)^m = Sum_{k=s..t} 1/(prime(k)+d)^m with 0 < i <= j and 0 < s <= t then we must have (i,j) = (s,t), unless d = m = 1 and {(i,j),(s,t)} = {(4,4),(8,10)} or {(4,7),(5,10)}. (Note that 1/(prime(8)+1)+1/(prime(9)+1)+1/(prime(10)+1) = 1/(prime(4)+1) and Sum_{k=5..10} 1/(prime(k)+1) = 1/(prime(4)+1) + Sum_{k=5..7} 1/(prime(k)+1).) - Zhi-Wei Sun, Sep 09 2015
Numbers n such that (prime(i)^n + n) is divisible by (n+1), for all i >= 1, except when prime(i) = n+1. - Richard R. Forberg, Aug 11 2016
a(n) is the period of Fubini numbers (A000670) over the n-th prime. - Federico Provvedi, Nov 28 2020

References

  • Archimedeans Problems Drive, Eureka, 40 (1979), 28.
  • Harvey Dubner, Generalized Fermat primes, J. Recreational Math., 18 (1985): 279-280.
  • M. Gardner, The Colossal Book of Mathematics, pp. 31, W. W. Norton & Co., NY, 2001.
  • M. Gardner, Mathematical Circus, pp. 251-2, Alfred A. Knopf, NY, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = K(n, 1) and A034693(K(n, 1)) = 1 for all n. The subscript n refers to this sequence and K(n, 1) is the index in A034693. - Labos Elemer
Cf. A000040, A034694. Different from A075728.
Complement of A072668 (composite numbers minus 1), A072670(a(n))=0.
Essentially the same as A039915.
Cf. A101301 (partial sums), A005867 (partial products).
Column 1 of the following arrays/triangles: A087738, A249741, A352707, A378979, A379010.
The last diagonal of A162619, and of A174996, the first diagonal in A131424.
Row lengths of irregular triangles A086145, A124223, A212157.

Programs

Formula

a(n) = (p-1)! mod p where p is the n-th prime, by Wilson's theorem. - Jonathan Sondow, Jul 13 2010
a(n) = A000010(prime(n)) = A000010(A006005(n)). - Antti Karttunen, Dec 16 2012
a(n) = A005867(n+1)/A005867(n). - Eric Desbiaux, May 07 2013
a(n) = A000040(n) - 1. - Omar E. Pol, Oct 26 2013
a(n) = A033879(A000040(n)). - Omar E. Pol, Jan 30 2014

Extensions

Correction for change of offset in A158611 and A008578 in Aug 2009 Jaroslav Krizek, Jan 27 2010
Obfuscating comments removed by Joerg Arndt, Mar 11 2010
Edited by Charles R Greathouse IV, Apr 20 2010

A038548 Number of divisors of n that are at most sqrt(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 4, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 5, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Keywords

Comments

Number of ways to arrange n identical objects in a rectangle, modulo rotation.
Number of unordered solutions of x*y = n. - Colin Mallows, Jan 26 2002
Number of ways to write n-1 as n-1 = x*y + x + y, 0 <= x <= y <= n. - Benoit Cloitre, Jun 23 2002
Also number of values for x where x+2n and x-2n are both squares (e.g., if n=9, then 18+18 and 18-18 are both squares, as are 82+18 and 82-18 so a(9)=2); this is because a(n) is the number of solutions to n=k(k+r) in which case if x=r^2+2n then x+2n=(r+2k)^2 and x-2n=r^2 (cf. A061408). - Henry Bottomley, May 03 2001
Also number of sums of sequences of consecutive odd numbers or consecutive even numbers including sequences of length 1 (e.g., 12 = 5+7 or 2+4+6 or 12 so a(12)=3). - Naohiro Nomoto, Feb 26 2002
Number of partitions whose consecutive parts differ by exactly two.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1). - Christian G. Bower, Jun 06 2005
Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly twice. Example: a(12)=3 because we have [3,3,2,2,1,1],[2,2,2,2,2,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 07 2006
a(n) is also the number of nonnegative integer solutions of the Diophantine equation 4*x^2 - y^2 = 16*n. For example, a(24)=4 because there are 4 solutions: (x,y) = (10,4), (11,10), (14,20), (25,46). - N-E. Fahssi, Feb 27 2008
a(n) is the number of even divisors of 2*n that are <= sqrt(2*n). - Joerg Arndt, Mar 04 2010
First differences of A094820. - John W. Layman, Feb 21 2012
a(n) = #{k: A027750(n,k) <= A000196(n)}; a(A008578(n)) = 1; a(A002808(n)) > 1. - Reinhard Zumkeller, Dec 26 2012
Row lengths of the tables in A161906 and A161908. - Reinhard Zumkeller, Mar 08 2013
Number of positive integers in the sequence defined by x_0 = n, x_(k+1) = (k+1)*(x_k-2)/(k+2) or equivalently by x_k = n/(k+1) - k. - Luc Rousseau, Mar 03 2018
Expanding the first comment: Number of rectangles with area n and integer side lengths, modulo rotation. Also number of 2D grids of n congruent squares, in a rectangle, modulo rotation (cf. A000005 for rectangles instead of squares; cf. A034836 for the 3D case). - Manfred Boergens, Jun 08 2021
Number of divisors of n that have an even number of prime divisors (counted with multiplicity), or in other words, number of terms of A028260 that divide n. - Antti Karttunen, Apr 17 2022

Examples

			a(4) = 2 since 4 = 2 * 2 = 4 * 1. Also A034178(4*4) = 2 since 16 = 4^2 - 0^2 = 5^2 - 3^2. - _Michael Somos_, May 11 2011
x + x^2 + x^3 + 2*x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + ...
		

References

  • George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, page 18, exer. 21, 22.

Crossrefs

Different from A068108. Records give A038549, A004778, A086921.
Cf. A066839, A033676, row sums of A303300.
Inverse Möbius transform of A065043.
Cf. A244664 (Dgf at s=2), A244665 (Dgf at s=3).

Programs

Formula

a(n) = ceiling(d(n)/2), where d(n) = number of divisors of n (A000005).
a(2k) = A034178(2k) + A001227(k). a(2k+1) = A034178(2k+1). - Naohiro Nomoto, Feb 26 2002
G.f.: Sum_{k>=1} x^(k^2)/(1-x^k). - Jon Perry, Sep 10 2004
Dirichlet g.f.: (zeta(s)^2 + zeta(2*s))/2. - Christian G. Bower, Jun 06 2005 [corrected by Vaclav Kotesovec, Aug 19 2019]
a(n) = (A000005(n) + A010052(n))/2. - Omar E. Pol, Jun 23 2009
a(n) = A034178(4*n). - Michael Somos, May 11 2011
2*a(n) = A161841(n). - R. J. Mathar, Mar 07 2021
a(n) = A000005(n) - A056924(n) = A056924(n) + A010052(n) = Sum_{d|n} A065043(d). - Antti Karttunen, Apr 17 2022
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma - 1/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022

A350842 Number of integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 40, 54, 69, 89, 118, 146, 187, 239, 297, 372, 468, 575, 711, 880, 1075, 1314, 1610, 1947, 2359, 2864, 3438, 4135, 4973, 5936, 7090, 8466, 10044, 11922, 14144, 16698, 19704, 23249, 27306, 32071, 37639, 44019, 51457, 60113
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (211)   (41)     (51)      (52)
                    (1111)  (221)    (222)     (61)
                            (2111)   (321)     (322)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Heinz number rankings are in parentheses below.
The version for no difference 0 is A000009.
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The version for all differences > -2 is A034296, strict A001227.
The opposite version is A072670.
The version for no difference -1 is A116931 (A319630), strict A003114.
The multiplicative version is A350837 (A350838), strict A350840.
The strict case is A350844.
The complement for quotients is counted by A350846 (A350845).
A000041 = integer partitions.
A027187 = partitions of even length.
A027193 = partitions of odd length (A026424).
A323092 = double-free partitions (A320340), strict A120641.
A325534 = separable partitions (A335433).
A325535 = inseparable partitions (A335448).
A350839 = partitions with a gap and conjugate gap (A350841).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],-2]&]],{n,0,30}]

A347460 Number of distinct possible alternating products of factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 5, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			The a(n) alternating products for n = 1, 4, 8, 12, 24, 30, 36, 48, 60, 120:
  1  4  8    12   24   30    36   48    60    120
     1  2    3    6    10/3  9    12    15    30
        1/2  3/4  8/3  5/6   4    16/3  20/3  40/3
             1/3  2/3  3/10  1    3     15/4  15/2
                  3/8  2/15  4/9  3/4   12/5  24/5
                  1/6        1/4  1/3   3/5   10/3
                             1/9  3/16  5/12  5/6
                                  1/12  4/15  8/15
                                        3/20  3/10
                                        1/15  5/24
                                              2/15
                                              3/40
                                              1/30
		

Crossrefs

Positions of 1's are 1 and A000040.
Positions of 2's appear to be A001358.
Positions of 3's appear to be A030078.
Dominates A038548, the version for reverse-alternating product.
Counting only integers gives A046951.
The even-length case is A072670.
The version for partitions (not factorizations) is A347461, reverse A347462.
The odd-length case is A347708.
The length-3 case is A347709.
A001055 counts factorizations (strict A045778, ordered A074206).
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A276024 counts distinct positive subset-sums of partitions, strict A284640.
A292886 counts knapsack factorizations, by sum A293627.
A299701 counts distinct subset-sums of prime indices, positive A304793.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@facs[n]]],{n,100}]

A211266 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 1, 3, 5, 7, 10, 12, 15, 18, 21, 24, 28, 30, 34, 38, 41, 44, 49, 51, 56, 60, 63, 67, 72, 75, 79, 83, 88, 91, 97, 99, 104, 109, 112, 117, 123, 125, 130, 135, 140, 143, 149, 152, 157, 163, 167, 170, 177, 180, 186, 190, 194, 199, 205, 209, 215, 219, 223
Offset: 1

Views

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

Guide to related sequences:
A056924 ... 1<=x
A211159 ... 1<=x
A211261 ... 1<=x
A211262 ... 1<=x
A211263 ... 1<=x
A211264 ... 1<=x
A211265 ... 1<=x
A211266 ... 1<=x
A211267 ... 1<=x
A181972 ... 1<=x
A038548 ... 1<=x<=y<=n ... x*y=n
A072670 ... 1<=x<=y<=n ... x*y=n+1
A211270 ... 1<=x<=y<=n ... x*y=2n
A211271 ... 1<=x<=y<=n ... x*y=3n
A211272 ... 1<=x<=y<=n ... x*y=floor(n/2)
A094820 ... 1<=x<=y<=n ... x*y<=n
A091627 ... 1<=x<=y<=n ... x*y<=n+1
A211273 ... 1<=x<=y<=n ... x*y<=2n
A211274 ... 1<=x<=y<=n ... x*y<=3n
A211275 ... 1<=x<=y<=n ... x*y<=floor(n/2)

Examples

			a(6) counts these pairs: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4).
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)

A072668 Numbers one less than composite numbers.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Author

Henry Bottomley, Apr 11 2001

Keywords

Comments

Complement of A006093 (primes minus 1).
Numbers which can be written as i*j+i+j, 0A072670(a(n))>0 for n>1.
a(n)! is divisible by a(n)*(a(n)+1)/2, see A060462.

Crossrefs

Programs

  • Magma
    [n-1: n in [2..120] | not IsPrime(n)]; // Vincenzo Librandi, Jun 09 2015
    
  • Mathematica
    Select[Range[4, 96], CompositeQ] - 1 (* Michael De Vlieger, Dec 10 2020 *)
  • PARI
    for(n=2,100,if(!isprime(n),print1(n-1,", "))) \\ Derek Orr, Jun 08 2015
    
  • Python
    from sympy import composite
    def A072668(n): return composite(n)-1 # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A002808(n) - 1.
a(n) = 2*A002808(n) - A079696(n). - Juri-Stepan Gerasimov, Oct 22 2009
a(n) = A060462(n).

A350844 Number of strict integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 4, 4, 7, 7, 8, 11, 12, 15, 18, 21, 23, 31, 32, 40, 45, 54, 59, 73, 78, 94, 106, 122, 136, 161, 177, 203, 231, 259, 293, 334, 372, 417, 476, 525, 592, 663, 742, 821, 931, 1020, 1147, 1271, 1416, 1558, 1752, 1916, 2137, 2357, 2613, 2867
Offset: 0

Author

Gus Wiseman, Jan 21 2022

Keywords

Examples

			The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12):
  1   2   3    4   5    6     7    8     9     A      B     C
          21       32   51    43   62    54    73     65    84
                   41   321   52   71    63    82     74    93
                              61   521   72    91     83    A2
                                         81    541    92    B1
                                         432   721    A1    543
                                         621   4321   632   651
                                                      821   732
                                                            741
                                                            921
                                                            6321
		

Crossrefs

The version for no difference 0 is A000009.
The version for no difference > -2 is A001227, non-strict A034296.
The version for no difference -1 is A003114 (A325160).
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The opposite version is A072670.
The multiplicative version is A350840, non-strict A350837 (A350838).
The non-strict version is A350842.
A000041 counts integer partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length (A026424).
A116931 counts partitions with no difference -1 (A319630).
A323092 counts double-free integer partitions (A320340) strict A120641.
A325534 counts separable partitions (A335433).
A325535 counts inseparable partitions (A335448).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],0|-2]&]],{n,0,30}]

A261029 Number of ways to write n in the form F(x,y,z) = x^3 + y^3 + z^3 - 3xyz, where 0 <= x <= y <= z and z >= x+1.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1, 2, 0, 1, 1, 0, 1, 1, 2, 3, 1, 0, 1, 2, 0, 1, 2, 1, 1, 1, 0, 2, 1, 0, 1, 2, 1, 1, 1, 0, 2, 1, 0, 2, 1, 3, 1, 3, 0, 1, 1, 0, 1, 1, 1, 3, 2, 0, 1, 2, 0, 2, 1, 2, 1, 1, 0, 2, 2, 0, 1, 2, 3, 1, 1, 0, 1, 1
Offset: 0

Author

Vladimir Shevelev, Aug 22 2015

Keywords

Comments

The following is a short proof of the corresponding 1915 result of R. D. Carmichael for a weaker restriction.
If n is in A074232, then a(n) >= 1, in view of the following identities: if n == 1 (mod 3), then n = F((n-1)/3, (n-1)/3, (n+2)/3); if n == 2 (mod 3), then n = F((n-2)/3, (n+1)/3, (n+1)/3); if n == 0 (mod 9), then n = F(n/9-1, n/9, n/9+1). QED
Further, if n > 1 is the cube of a positive number or the sum of two positive cubes, except for 2 and 9, then a(n) >= 2.
The sequence is unbounded.
Proof. We use the homogeneity of F(x,y,z) of degree 3. By induction, show that a(8^k) >= k+1. It is evident for k=0. Suppose that it is true for some value of k. Take k+1 triples (x_i,y_i,z_i) such that 8^k = F(x_i, y_i, z_i), i=1,...,k+1. Then for k+1 triples of even numbers (2*x_i, 2*y_i, 2*z_i) we have 8^(k+1) = F(2*x_i, 2*y_i, 2*z_i). But there is always a triple of not all even numbers (x=(n-1)/3, y=(n-1)/3, z=(n+2)/3) or (x=(n-2)/3, y=(n+1)/3, z=(n+1)/3), where n = 8^(k+1), for which 8^(k+1) = F(x,y,z). So a(8^(k+1)) >= k+2. QED
Theorem. For every n there exists k such that a(k)=n. For a proof, see [Shevelev] link.
Smallest such k are presented in sequence A260935.

Crossrefs

Programs

  • Mathematica
    r[n_] := Reduce[0 <= x <= y <= z && z >= x+1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers];
    a[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]];
    Array[a, 100, 0] (* Jean-François Alcover, Nov 06 2018 *)

Formula

For positive n, a(n)=0, if and only if n == 3 or 6 (mod 9); if p is prime, other than 3, then a(p) = a(2*p) = 1.
For n >= 1, a(8^(n-1)) = n.

Extensions

More terms from Peter J. C. Moses, Aug 22 2015

A161840 Number of noncentral divisors of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 4, 0, 2, 2, 4, 0, 4, 0, 4, 2, 2, 0, 6, 2, 2, 2, 4, 0, 6, 0, 4, 2, 2, 2, 8, 0, 2, 2, 6, 0, 6, 0, 4, 4, 2, 0, 8, 2, 4, 2, 4, 0, 6, 2, 6, 2, 2, 0, 10, 0, 2, 4, 6, 2, 6, 0, 4, 2, 6, 0, 10, 0, 2, 4, 4, 2, 6, 0, 8, 4, 2, 0, 10, 2, 2, 2, 6, 0, 10, 2, 4, 2, 2, 2, 10, 0, 4, 4, 8
Offset: 1

Author

Omar E. Pol, Jun 21 2009

Keywords

Comments

Noncentral divisors in the following sense: if we sort the divisors of n in natural order, there is one "central", median divisor if the number of divisors tau(n) = A000005(n) is odd, and there are two "central" divisors if tau(n) is even. a(n) is the number of divisors not counting the median or two central divisors.

Examples

			The divisors of 4 are 1, 2, 4 so the noncentral divisors of 4 are 1, 4 because its central divisor is 2.
The divisors of 12 are 1, 2, 3, 4, 6, 12 so the noncentral divisors of 12 are 1, 2, 6, 12 because its central divisors  are 3, 4.
		

Programs

Formula

a(n) = tau(n)-2 + (tau(n) mod 2), tau = A000005.
a(n) = A000005(n) - A049240(n) - 1.
a(n) = A000005(n) + A010052(n) - 2.
a(n) = A000005(n) - A169695(n).
For n >= 2, a(n) = A200213(n) + 2*A010052(n). - Antti Karttunen, Jul 07 2017
a(n) = 2*A072670(n-1). - Omar E. Pol, Jul 08 2017
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 3), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 14 2024

Extensions

More terms from R. J. Mathar, Jul 04 2009
Showing 1-10 of 29 results. Next