cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A105501 Numbers n such that 1 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

1, 2, 7, 12, 17, 21, 22, 26, 27, 31, 36, 40, 41, 45, 46, 50, 55, 60, 64, 65, 69, 70, 74, 79, 84, 88, 89, 93, 94, 98, 103, 107, 108, 112, 113, 117, 122, 127, 131, 132, 136, 137, 141, 146, 151, 155, 156, 160, 161, 165, 170, 174, 175, 179, 180, 184, 189, 194, 198, 199
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 1; A105511(a(n)) = A105511(a(n) - 1) + 1.

Examples

			a(10)=31: A008963(31) = A000030(A000045(31)) =
A000030(1346269) = 1.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
      t:= combinat:-fibonacci(n);
      t < 2*10^ilog10(t)
    end proc:
    select(filter, [$1..200]); # Robert Israel, May 02 2018
  • Mathematica
    fQ[n_] := IntegerDigits[Fibonacci[n]][[1]] == 1; Select[Range@200, fQ] (* Robert G. Wilson v, May 02 2018 *)
  • PARI
    is(n)=digits(fibonacci(n))[1]==1 \\ Charles R Greathouse IV, Oct 07 2016

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/log(2) = 3.321928.... - Charles R Greathouse IV, Oct 07 2016

A073550 Number of Fibonacci numbers F(k), k <= 10^n, which end in 1.

Original entry on oeis.org

3, 14, 134, 1334, 13334, 133334, 1333334, 13333334, 133333334, 1333333334, 13333333334, 133333333334, 1333333333334, 13333333333334, 133333333333334, 1333333333333334, 13333333333333334, 133333333333333334
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 15 2002

Keywords

Examples

			a(2) = 14 because there are 14 Fibonacci numbers up to 10^2 which end in 1.
		

Crossrefs

Cf. A072675. Different from A072509.

Formula

a(n) = ceiling((10^n-1)/60) + ceiling((10^n-2)/60) + ceiling((10^n-8)/60) + ceiling((10^n-19)/60) + ceiling((10^n-22)/60) + ceiling((10^n-28)/60) + ceiling((10^n-41)/60) + ceiling((10^n-59)/60).
a(n) = ceiling(40/3*10^(n-1)) for n>1. - Benoit Cloitre, Aug 27 2002; [Edited by Felix Fröhlich, Jun 08 2019]

Extensions

More terms from Vladeta Jovovic, Aug 20 2002

A072509 Number of Fibonacci numbers F(k) <= 10^n which end in 1.

Original entry on oeis.org

2, 2, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 8, 10, 11, 11, 11, 13, 13, 14, 14, 15, 15, 15, 15, 17, 18, 19, 19, 20, 21, 22, 22, 22, 23, 23, 23, 23, 26, 27, 27, 27, 29, 29, 30, 30, 31, 31, 31, 31, 32, 34, 35, 35, 36, 37, 38, 38, 38, 39, 39, 39, 39, 42, 42, 43, 43, 45, 45, 46, 46, 47, 47
Offset: 0

Views

Author

Vladeta Jovovic, Aug 23 2002

Keywords

Comments

Note that F(k) ends in 1 if and only if k == 1, 2, 8, 19, 22, 28, 41, or 59 (mod 60). - Robert Israel, May 14 2018

Crossrefs

Different from A073550. Cf. A072353, A072675.

Programs

Showing 1-3 of 3 results.