cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A105511 Number of times 1 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 7, 7, 7, 7, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 13, 13, 13, 13, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 20, 20, 20, 20, 21, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 1, 1, 0], {n, 0, 100}]] (* Amiram Eldar, Jan 12 2023 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==1);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023

Formula

a(n) = #{k: A008963(k) = 1 and 0<=k<=n};
a(A105501(n)) = a(A105501(n) - 1) + 1;
n = a(n) + A105512(n) + A105513(n) + A105514(n) + A105515(n) + A105516(n) + A105517(n) + A105518(n) + A105519(n).
a(n) ~ log_10(2) * n. - Amiram Eldar, Jan 12 2023

A105502 Numbers m such that 2 is the leading digit of the m-th Fibonacci number in decimal representation.

Original entry on oeis.org

3, 8, 13, 18, 23, 32, 37, 42, 47, 51, 56, 61, 66, 75, 80, 85, 90, 99, 104, 109, 114, 118, 123, 128, 133, 142, 147, 152, 157, 166, 171, 176, 185, 190, 195, 200, 209, 214, 219, 224, 233, 238, 243, 252, 257, 262, 267, 276, 281, 286, 291, 295, 300, 305, 310, 319
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 2; A105512(a(n)) = A105512(a(n) - 1) + 1.

Examples

			a(10)=51: A008963(51) = A000030(A000045(51)) = A000030(20365011074) = 2.
		

Crossrefs

Programs

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(3) - log(2)) = 5.67887.... - Charles R Greathouse IV, Oct 07 2016

A105505 Numbers n such that 5 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

5, 10, 29, 34, 53, 58, 77, 96, 101, 120, 125, 139, 144, 163, 168, 187, 192, 206, 211, 230, 235, 254, 273, 278, 297, 302, 321, 340, 345, 364, 369, 388, 407, 412, 431, 436, 455, 474, 479, 498, 503, 522, 541, 546, 565, 570, 584, 589, 608, 613, 632, 637, 651, 656
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 5; A105515(a(n)) = A105515(a(n) - 1) + 1.

Examples

			a(10)=120: A008963(120) = A000030(A000045(120)) =
A000030(5358359254990966640871840) = 5.
		

Crossrefs

Programs

  • Maple
    ld:= x -> floor(x/10^ilog10(x)):
    select(n -> ld(combinat:-fibonacci(n))=5, [$1..1000]); # Robert Israel, Oct 26 2020
  • Mathematica
    Select[Range[700],First[IntegerDigits[Fibonacci[#]]]==5&] (* Harvey P. Dale, Jul 31 2018 *)
  • PARI
    is(n)=digits(fibonacci(n))[1]==5 \\ Charles R Greathouse IV, Oct 07 2016

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(6) - log(5)) = 12.629253.... - Charles R Greathouse IV, Oct 07 2016

A105503 Numbers n such that 3 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

4, 9, 14, 28, 33, 38, 52, 57, 71, 76, 81, 95, 100, 105, 119, 124, 138, 143, 148, 162, 167, 172, 181, 186, 191, 205, 210, 215, 229, 234, 239, 248, 253, 258, 272, 277, 282, 296, 301, 306, 315, 320, 325, 339, 344, 349, 363, 368, 382, 387, 392, 406, 411, 416, 430
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 3; A105513(a(n)) = A105513(a(n) - 1) + 1.

Examples

			a(10)=76: A008963(76) = A000030(A000045(76)) =
A000030(3416454622906707) = 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[{n,Fibonacci[n]},{n,450}],First[IntegerDigits[#[[2]]]]==3&][[All,1]] (* Harvey P. Dale, Apr 13 2019 *)
  • PARI
    is(n)=digits(fibonacci(n))[1]==3 \\ Charles R Greathouse IV, Oct 07 2016

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(4) - log(3)) = 8.00392.... - Charles R Greathouse IV, Oct 07 2016

Extensions

Definition clarified by Harvey P. Dale, Apr 13 2019

A105504 Numbers m such that 4 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

19, 24, 43, 48, 62, 67, 72, 86, 91, 110, 115, 129, 134, 153, 158, 177, 182, 196, 201, 220, 225, 244, 249, 263, 268, 287, 292, 311, 316, 330, 335, 354, 359, 373, 378, 383, 397, 402, 421, 426, 440, 445, 450, 464, 469, 488, 493, 507, 512, 517, 531, 536, 555, 560
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 4; A105514(a(n)) = A105514(a(n) - 1) + 1.

Examples

			a(10)=110: A008963(110) = A000030(A000045(110)) =
A000030(43566776258854844738105) = 4.
		

Crossrefs

Programs

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(5) - log(4)) = 10.318851.... - Charles R Greathouse IV, Oct 07 2016

A105506 Numbers m such that 6 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

15, 20, 39, 63, 82, 87, 106, 130, 149, 154, 173, 197, 216, 221, 240, 259, 264, 283, 288, 307, 326, 331, 350, 355, 374, 393, 398, 417, 422, 441, 460, 465, 484, 508, 527, 532, 551, 575, 594, 599, 618, 642, 661, 666, 685, 709, 728, 733, 752, 771, 776, 795, 800
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 6; A105516(a(n)) = A105516(a(n) - 1) + 1.

Examples

			a(10)=154: A008963(154) = A000030(A000045(154)) =
A000030(68330027629092351019822533679447) = 6.
		

Crossrefs

Programs

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(7) - log(6)) = 14.9372.... - Charles R Greathouse IV, Oct 07 2016

A105507 Numbers m such that 7 is the leading digit of the n-th Fibonacci number in decimal representation.

Original entry on oeis.org

25, 44, 49, 68, 92, 111, 116, 135, 159, 178, 183, 202, 226, 245, 250, 269, 293, 312, 317, 336, 360, 379, 384, 403, 427, 446, 470, 489, 494, 513, 537, 556, 561, 580, 604, 623, 628, 647, 671, 690, 695, 714, 738, 757, 762, 781, 805, 824, 829, 848, 872, 891, 915
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 7; A105517(a(n)) = A105517(a(n) - 1) + 1.

Examples

			a(10)=178: A008963(178) = A000030(A000045(178)) =
A000030(7084593923980518516849609894969925639) = 7.
		

Crossrefs

Programs

Formula

a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(8) - log(7)) = 17.24377.... - Charles R Greathouse IV, Oct 07 2016

A105508 Numbers m such that 8 is the leading digit of the m-th Fibonacci number in decimal representation.

Original entry on oeis.org

6, 11, 30, 54, 73, 78, 97, 121, 140, 145, 164, 188, 207, 231, 255, 274, 298, 322, 341, 365, 389, 408, 432, 451, 456, 475, 499, 518, 523, 542, 566, 585, 590, 609, 633, 652, 676, 700, 719, 743, 767, 786, 810, 834, 853, 877, 896, 901, 920, 944, 963, 968, 987
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Examples

			a(1)=6 since the 6th Fibonacci: 8 begins with 8.
a(2)=11 since the 11th Fibonacci: 89 begins with 8.
		

Crossrefs

Programs

Formula

A008963(a(n)) = A000030(A000045(a(n))) = 8.
A105518(a(n)) = A105518(a(n) - 1) + 1.
A000045(a(n)) = A045732(n).
a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(9) - log(8)) = 19.549378.... - Charles R Greathouse IV, Oct 07 2016

Extensions

Example and formulas edited by Michel Marcus, Jan 10 2014

A105509 Numbers m such that 9 is the leading digit of the m-th Fibonacci number in decimal representation.

Original entry on oeis.org

16, 35, 59, 83, 102, 126, 150, 169, 193, 212, 236, 260, 279, 303, 327, 346, 370, 394, 413, 437, 461, 480, 504, 528, 547, 571, 595, 614, 638, 657, 681, 705, 724, 748, 772, 791, 815, 839, 858, 882, 906, 925, 949, 973, 992, 1016, 1040, 1059, 1083, 1102, 1107
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Comments

A008963(a(n)) = 9; A105519(a(n)) = A105519(a(n) - 1) + 1.
Comment from Jonathan Vos Post, Dec 23 2006: Peterson says: "Calculate 100/89 = 1.1235955056... This fraction generates the first five Fibonacci numbers before blurring into other digits. ... 10000/9899 = 1.0102030508132134559046368... generates the first 10 Fibonacci numbers (using two digits per number). 1000000/998999 generates the first 15 Fibonacci numbers (using three digits per number). ... in successive fractions, two 0's are appended to the numerator and a 9 to the beginning and end of the denominator...."

Examples

			a(10)=21: A008963(212) = A000030(A000045(212)) =
A000030(90343046356137747723758225621187571439538669) = 9.
		

Crossrefs

Programs

Formula

m such that d(m+5)-d(m) = 2 for d(m) = floor(1 + log_10(F(m))) and F(m) = m-th Fibonacci number = A000045(m). - Jonathan Vos Post, Dec 23 2006
a(n) ~ k*n by the equidistribution theorem, where k = 1/(1 - log(9)/log(10)) = 21.8543.... - Charles R Greathouse IV, Oct 07 2016

A045725 Fibonacci numbers having initial digit '1'.

Original entry on oeis.org

1, 13, 144, 1597, 10946, 17711, 121393, 196418, 1346269, 14930352, 102334155, 165580141, 1134903170, 1836311903, 12586269025, 139583862445, 1548008755920, 10610209857723, 17167680177565, 117669030460994, 190392490709135, 1304969544928657, 14472334024676221, 160500643816367088
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A105501.
Intersection of A000045 and A131835.

Programs

  • Magma
    [Fibonacci(n): n in [2..100] | Intseq(Fibonacci(n))[#Intseq(Fibonacci(n))] eq 1]; // Vincenzo Librandi, Jan 30 2019
    
  • Mathematica
    Select[Fibonacci[Range[2, 100]], IntegerDigits[#, 10][[1]] == 1 &] (* T. D. Noe, Nov 01 2006 *)
  • PARI
    select(x->(digits(x)[1] == 1), vector(85, n, fibonacci(n+1))) \\ Michel Marcus, Jan 30 2019
    
  • Scala
    def fibonacci(n: BigInt): BigInt = {
      val zero = BigInt(0)
      def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match {
        case `zero` => a
        case _ => fibTail(n - 1, b, a + b)
      }
      fibTail(n, 0, 1)
    } // Tail recursion by Dario Carrrasquel
    ((2 to 100).map(fibonacci())).filter(.toString.startsWith("1")) // Alonso del Arte, Apr 22 2019

Extensions

Corrected by T. D. Noe, Nov 01 2006
Showing 1-10 of 10 results.