cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A051786 Propp's cubic recurrence: a(0)=a(1)=a(2)=a(3)=1; for n>3, a(n)=(1+a(n-1)*a(n-2)*a(n-3))/a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 7, 43, 452, 45351, 125920291, 60027819184831, 758397193749171922281611, 126403219004744354228963383975713263866432, 45699526286117471520994956894648733172150425791690122432447239675853643
Offset: 0

Views

Author

Michael Somos, Dec 09 1999

Keywords

References

Crossrefs

Programs

  • Haskell
    a051786 n = a051786_list !! n
    a051786_list = 1 : 1 : 1 : 1 :
       zipWith div (tail $ zipWith3 (\u v w -> 1 + u * v * w)
                   (drop 2 a051786_list) (tail a051786_list) a051786_list)
                   a051786_list
    -- Reinhard Zumkeller, Jan 07 2014
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==(1+a[n-1]a[n-2]a[n-3])/ a[n-4]},a[n],{n,15}] (* Harvey P. Dale, May 14 2011 *)
  • PARI
    {a(n) = if( n<0, n = 3-n); if( n<4, 1, (a(n-1) * a(n-2) * a(n-3) + 1) / a(n-4)) } /* Michael Somos, Oct 16 2006 */
    
  • PARI
    a=vector(15); a[1]=a[2]=a[3]=1;a[4]=2; for(n=5, #a, a[n]=(1+a[n-1]*a[n-2]*a[n-3])/a[n-4]); concat(1, a) \\ Altug Alkan, Sep 27 2018
    

Formula

a(0)=a(1)=a(2)=a(3)=1; for n>3, a(n+2)*a(n-2) = 1 + a(n+1)*a(n)*a(n-1).
a(-n) = a(n+3).
From Vaclav Kotesovec, May 20 2015: (Start)
a(n) ~ c1^(((1+sqrt(13)-sqrt(2*sqrt(13)-2))/4)^n) * c2^(((1+sqrt(13)+sqrt(2*sqrt(13)-2))/4)^n) * (c3^2+c4^2)^((-1)^n * cos(n*arccot(sqrt((2*sqrt(13)-5)/3)))) * exp(2*(-1)^n*arctan(c4/c3) * sin(n*arccot(sqrt((2*sqrt(13)-5)/3)))), where
c1 = 0.0858378165313271469223136812741638183980800626360336156811045938771...
c2 = 1.0479981158737678235689040669973933524451313410375783562899638042343...
c3 = 1.0681060454695696105471945019699938961207077685059613621050203396954...
c4 = 0.0530316436302789163635657674741144158928386126460043035284221194603...
(End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 17 2007

A379686 a(n) = (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)*(a(n-4)+1)/a(n-5), with a(1)=1, a(2)=2, a(3)=6, a(4)=42, a(5)=1806.

Original entry on oeis.org

1, 2, 6, 42, 1806, 1631721, 443752508927, 9376966151402427009536, 292117920945338351144537464770855449375232, 1098221126335915194898500730834145753769059346709551018699709189743396297017856
Offset: 1

Views

Author

Keywords

Comments

Sequence consists of (positive) integers.
Values of a unitary Y-frieze pattern associated to the linearly oriented quiver K5 (i.e., the quiver whose underlying graph is the complete graph on the vertices {1,2,3,4,5}, oriented such that i -> j whenever i < j).

Crossrefs

Programs

  • GAP
    x := [1,2,6,42,1806]; for n in [1..15] do x[n+5] := (x[n+4]+1)*(x[n+3]+1)*(x[n+2]+1)*(x[n+1]+1)/x[n]; od;
    
  • Magma
    I:=[1, 2, 6, 42,1806]; [n le 5 select I[n] else (Self(n-1)+1)*(Self(n-2)+1)*(Self(n-3)+1)*(Self(n-4)+1)/Self(n-5): n in [1..15]]; // Vincenzo Librandi, Dec 31 2024
  • Mathematica
    a[1]=1;a[2]=2;a[3]=6;a[4]=42;a[5]=1806;a[n_]:=(a[n-1]+1)*(a[n-2]+1)*(a[n-3]+1)*(a[n-4]+1)/a[n-5];Table[a[n],{n,10}] (* James C. McMahon, Jan 08 2025 *)

Formula

a(n) = b(n+1) * b(n+2) * b(n+3) * b(n+4) where b is A072713. - Andrey Zabolotskiy, Jan 08 2025
Showing 1-2 of 2 results.