Original entry on oeis.org
1, 1, 1, 1, 2, 3, 7, 43, 452, 45351, 125920291, 60027819184831
Offset: 1
A072713
a(1)=a(2)=a(3)=a(4)=a(5)=1; for n>5, a(n)*a(n-5) = a(n-1)*a(n-2)*a(n-3)*a(n-4)+1.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 7, 43, 1807, 815861, 147917502976, 1339566593057489572791, 6793440021984612817314824762112917427331, 607759339422199886496126580428414916308278553796099069562650354036190535151
Offset: 1
-
nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,(b*c*d*e+1)/a}; Join[{1,1,1,1}, Transpose[ NestList[nxt,{1,1,1,1,1},15]][[5]]] (* Harvey P. Dale, Oct 03 2012 *)
A276453
a(n) = (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4) with a(0) = a(1) = 1, a(2) = 2, a(3) = 6.
Original entry on oeis.org
1, 1, 2, 6, 42, 903, 136052, 881442036, 2581196224947732, 342795531574625708871288171, 5732512385084161208637718426682572229606557631, 5754497648510061274107897581706624823818534711463525598519384262130236399970112
Offset: 0
-
I:=[1, 1, 2, 6]; [n le 4 select I[n] else (Self(n-1)+1)*(Self(n-2)+1)*(Self(n-3)+1)/Self(n-4): n in [1..13]]; // Vincenzo Librandi, Dec 30 2024
-
RecurrenceTable[{a[n] == (a[n - 1] + 1) (a[n - 2] + 1) (a[n - 3] + 1)/a[n - 4], a[0] == 1, a[1] == 1, a[2] == 2, a[3] == 6}, a, {n, 0, 11}] (* Michael De Vlieger, Sep 03 2016 *)
-
def A276453(n)
a = [1, 1, 2, 6]
ary = [1]
while ary.size < n + 1
i = a[1..-1].inject(1){|s, i| s * (i + 1)}
break if i % a[0] > 0
a = *a[1..-1], i / a[0]
ary << a[0]
end
ary
end
A086889
Real part of Propp's cubic recurrence starting with i (i^2=-1).
Original entry on oeis.org
0, 0, 0, 0, -1, 1, -3, -3, -41, 140, -93456, 280356252, -471833669834248, 40261350925439315783335171, 20143180524957577201436416071451979623101429, 9048277144756224572757714728840507662214586396123974675011643142128755383165
Offset: 1
A086890
Imaginary part of Propp's cubic recurrence starting with i (i^2=-1).
Original entry on oeis.org
1, 1, 1, 1, -1, -2, 0, -10, 29, -689, 79779, -306741785, -537059115735445, 32782820784889194174016393, 123899509182081496572342154385115870319926534, 6620488215208352146569523585853411114659592927465468100410366988520167986216
Offset: 1
A376085
a(0..5) = 1 and a(n) = 1 - a(n-1) - a(n-2) + a(n-1)*a(n-2)*a(n-3)/a(n-4) + a(n-2)*a(n-3)*a(n-4)/a(n-5) + a(n-3)*a(n-4)*a(n-5)/a(n-6), for n > 5.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 4, 17, 68, 2312, 668169, 6179226912, 140378107463180352, 250687119058419133437352005889, 325446213917387462112884613611747886778483963398144, 1853431255195849256571682148793108515162996950284389365029788837512893363822697947303936
Offset: 0
-
a(n) = if( n<0, n = 6-n); if( n<6, 1, 1-a(n-1)-a(n-2)+a(n-1)*a(n-2)*a(n-3)/a(n-4)+a(n-2)*a(n-3)*a(n-4)/a(n-5)+a(n-3)*a(n-4)*a(n-5)/a(n-6))
Showing 1-6 of 6 results.
Comments