cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A075101 Numerator of 2^n/n.

Original entry on oeis.org

2, 2, 8, 4, 32, 32, 128, 32, 512, 512, 2048, 1024, 8192, 8192, 32768, 4096, 131072, 131072, 524288, 262144, 2097152, 2097152, 8388608, 2097152, 33554432, 33554432, 134217728, 67108864, 536870912, 536870912, 2147483648, 134217728, 8589934592, 8589934592, 34359738368, 17179869184, 137438953472
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 01 2002

Keywords

Crossrefs

Denominator is A000265(n).

Programs

  • Magma
    [Numerator(2^n/n): n in [1..50]]; // G. C. Greubel, Feb 28 2019
    
  • Maple
    [seq(numer(2^n/n),n=1..50)];
  • Mathematica
    f[n_]:=Numerator[2^n/n]; Array[f,50] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
  • PARI
    a(n) = numerator(2^n/n); \\ Michel Marcus, Mar 25 2018
    
  • PARI
    a(n) = 2^(n - valuation(n, 2)) \\ Jianing Song, Oct 24 2018
    
  • Python
    from fractions import Fraction
    def A075101(n):
        return (Fraction(2**n)/n).numerator # Chai Wah Wu, Mar 25 2018
    
  • Sage
    [numerator(2^n/n) for n in (1..50)] # G. C. Greubel, Feb 28 2019

Formula

a(n) = 2^(n - A007814(n)).
a(n) = 2*A084623(n). - Paul Curtz, Jan 28 2013
a(n) = 2^A093048(n). - Paul Curtz, Jun 10 2016
From Peter Bala, Feb 25 2019: (Start)
a(n) = 2^n/gcd(n,2^n).
O.g.f.: F(2*x) - (1/2)*F((2*x)^2) - (1/4)*F((2*x)^4) - (1/8)*F((2*x)^8) - ..., where F(x) = x/(1 - x). Cf. A000265.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = F((x/2)) + F((x/2)^2) + 2*F((x/2)^4) + 4*F((x/2)^8) + 8*F((x/2)^16) + 16*F((x/2)^32) + .... (End)
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 2^(2^(n-1)+n-1)/(2^(2^n) - 1) = Sum_{n>=1} A073113(n-1)/A051179(n) = 1.48247501707... - Amiram Eldar, Aug 14 2022

A352081 Numbers of the form k*p^k, where k>1 and p is a prime.

Original entry on oeis.org

8, 18, 24, 50, 64, 81, 98, 160, 242, 324, 338, 375, 384, 578, 722, 896, 1029, 1058, 1215, 1682, 1922, 2048, 2500, 2738, 3362, 3698, 3993, 4374, 4418, 4608, 5618, 6591, 6962, 7442, 8978, 9604, 10082, 10240, 10658, 12482, 13778, 14739, 15309, 15625, 15842, 18818
Offset: 1

Views

Author

Amiram Eldar, Apr 16 2022

Keywords

Comments

Each term in this sequence has a single presentation in the form k*p^k.

Examples

			8 is a term since 8 = 2*2^2.
18 is a term since 18 = 2*3^2.
24 is a term since 24 = 3*2^3.
		

Crossrefs

Subsequences: A036289 \ {0, 2}, A036290 \ {0, 3}, A036291 \ {0, 5}, A036293 \ {0, 7}, A073113 \ {2}, A079704, A100042, A104126.

Programs

  • Mathematica
    addP[p_, n_] := Module[{k = 2, s = {}, m}, While[(m = k*p^k) <= n, k++; AppendTo[s, m]]; s]; seq[max_] := Module[{m = Floor[Sqrt[max/2]], s = {}, ps}, ps = Select[Range[m], PrimeQ]; Do[s = Join[s, addP[p, max]], {p, ps}]; Sort[s]]; seq[2*10^4]

Formula

Sum_{n>=1} 1/a(n) = -A143524 = gamma - B_1, where gamma is Euler's constant (A001620), and B_1 is Mertens's constant (A077761).
Showing 1-2 of 2 results.