cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A086387 Duplicate of A073264.

Original entry on oeis.org

3, 5, 2, 5, 3, 5, 7, 3, 2, 3, 2, 3, 3, 3, 2, 7, 5, 2, 7, 3, 3, 7, 5, 5, 2, 7, 5, 2, 3, 7, 2, 2, 2, 3, 2
Offset: 0

Views

Author

Keywords

A073259 Number of iterations of f(n,k) = n+pi(k)+1 starting from f(n,n) until a fixed point is reached.

Original entry on oeis.org

4, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 4, 3, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 3, 4, 5, 4, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 4, 5, 4, 4, 3, 3, 4, 4, 4, 4, 5, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 5, 4, 4, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 4, 4, 4, 3, 4, 5
Offset: 1

Views

Author

Labos Elemer, Jul 22 2002

Keywords

Comments

Original name: Length of FixedPointList leading to value of n-th composite number.

Examples

			n=1000000:the list={1000000,1078499,1084157,1084577,1084604,1084605}, its length including initial term is 6, while composite[1000000]=1084605.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[FixedPointList[w+PrimePi[ # ]+1&, w]]-1, {w, 1, 128}]

Formula

See program below.

Extensions

Name clarified by Sean A. Irvine, Nov 21 2024

A073303 Indices of prime digits in the decimal expansion of Pi.

Original entry on oeis.org

0, 4, 6, 8, 9, 10, 13, 15, 16, 17, 21, 24, 25, 27, 28, 29, 31, 33, 39, 43, 46, 47, 48, 51, 53, 56, 61, 63, 64, 66, 73, 76, 83, 86, 89, 90, 91, 93, 96, 99, 102, 109, 111, 112, 114, 115, 120, 123, 130, 131, 133, 135, 136, 137, 139, 140, 141, 142, 143, 149, 156
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 22 2002

Keywords

Examples

			Pi=3.141592653, so the indices of prime digits are 0,4,6,8,9...
		

Crossrefs

Programs

Extensions

More terms from Harvey P. Dale, Oct 01 2013

A073260 Length of FixedPointList leading to value of [10^n]-th composite number.

Original entry on oeis.org

4, 4, 4, 5, 5, 6, 7, 7, 7, 8, 8, 9, 9
Offset: 1

Views

Author

Labos Elemer, Jul 22 2002

Keywords

Comments

One plus the number of iterations necessary to reach the composite number using the formula in the program. - Robert G. Wilson v, Jul 23 2002

Examples

			n=10^11: the list= {100000000000, 104118054814, 104280509328, 104286914053, 104287166025, 104287176027, 104287176414, 104287176419}, its length including initial term is 8, so a(11)=8.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[FixedPointList[10^w+PrimePi[ # ]+1&, 10^w]]-1, {w, 1, 11}]

Formula

See program below.

Extensions

More terms from Robert G. Wilson v, Jul 23 2002

A101456 Prime digits in the decimal expansion of Euler's constant (or Euler-Mascheroni constant) gamma.

Original entry on oeis.org

5, 7, 7, 2, 5, 5, 3, 2, 5, 2, 2, 2, 3, 2, 5, 3, 3, 5, 3, 2, 3, 5, 5, 7, 7, 2, 3, 7, 7, 2, 7, 7, 7, 7, 3, 7, 3, 2, 7, 7, 5, 3, 7, 2, 7, 2, 5, 5, 2, 3, 2, 2, 7, 3, 7, 2, 3, 5, 3, 2, 5, 3, 5, 3, 3, 3, 7, 2, 3, 7, 3, 3, 7, 7, 3, 7, 7, 3, 2, 7, 2, 5, 5, 2, 5, 2, 7, 7, 3, 5, 2, 3, 5, 7, 5, 3, 2, 3, 3, 5, 7, 7, 5, 2, 2
Offset: 0

Views

Author

Sebastian Gutierrez (sgutierr(AT)alum.mit.edu), Jan 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ RealDigits[ EulerGamma, 10, 275][[1]], PrimeQ[ # ] &] (* Robert G. Wilson v, Jan 21 2005 *)

Extensions

More terms from Robert G. Wilson v, Jan 21 2005

A360004 Sequence of composite digits as they appear in Pi.

Original entry on oeis.org

4, 9, 6, 8, 9, 9, 8, 4, 6, 6, 4, 8, 9, 8, 8, 4, 9, 6, 9, 9, 9, 8, 9, 4, 9, 4, 4, 9, 8, 6, 4, 6, 8, 6, 8, 9, 9, 8, 6, 8, 4, 8, 4, 6, 9, 8, 4, 8, 8, 6, 8, 6, 6, 4, 9, 8, 4, 4, 6, 9, 8, 9, 4, 8, 8, 4, 8, 4, 8, 4, 9, 8, 9, 6, 4, 4, 6, 9, 4, 8, 9, 4, 9, 8, 9, 6, 4, 4, 8, 8, 9, 6, 6, 9, 4, 4, 6, 8, 4
Offset: 1

Views

Author

Miles Galvin, Jan 21 2023

Keywords

Examples

			Pi = 3.14159265358... so we get 4, 9, 6, 8, ...
		

Crossrefs

Programs

  • Mathematica
    Select[First[RealDigits[N[Pi,225]]],CompositeQ] (* Stefano Spezia, Jan 21 2023 *)

A073261 Length of FixedPointList approximating (2^n)-th composite number. See program link below.

Original entry on oeis.org

4, 4, 3, 3, 3, 4, 3, 5, 4, 4, 5, 4, 5, 6, 6, 6, 6, 5, 6, 6, 7, 6, 6, 6, 7, 7, 8, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 9, 10
Offset: 0

Views

Author

Labos Elemer, Jul 22 2002

Keywords

Comments

Number of iterations needed to reach the composite number using the formula in the program.

Examples

			n=30: {1073741824, 1128141853, 1130754984, 1130880243, 1130886219, 1130886489, 1130886503, 1130886504}, so a(30)=8.
		

Crossrefs

Programs

  • Mathematica
    Table[ Length[ FixedPointList[ 2^n+PrimePi[ # ]+1 &, 2^n]]-1, {n, 0, 45}]

Extensions

Extended by Robert G. Wilson v, Jul 24 2002

A101457 Prime digits in the decimal expansion of golden ratio phi (or tau) = (1 + sqrt 5 )/2.

Original entry on oeis.org

3, 3, 7, 2, 5, 3, 3, 5, 3, 7, 7, 2, 3, 7, 5, 7, 2, 2, 3, 5, 2, 2, 7, 5, 2, 2, 2, 7, 7, 2, 7, 2, 3, 3, 7, 7, 5, 7, 5, 3, 7, 5, 2, 2, 3, 3, 2, 2, 2, 3, 5, 3, 3, 7, 3, 7, 7, 2, 3, 5, 3, 3, 3, 5, 5, 3, 5, 2, 5, 3, 3, 2, 2, 3, 2, 2, 2, 7, 7, 5, 2, 7, 2, 5, 7, 2, 7, 3, 2, 2, 2, 3, 2, 2, 5, 2, 2, 3, 3, 3, 7, 5, 7, 2, 2
Offset: 0

Views

Author

Sebastian Gutierrez (sgutierr(AT)alum.mit.edu), Jan 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ RealDigits[ GoldenRatio, 10, 275][[1]], PrimeQ[ # ] &] (* Robert G. Wilson v, Jan 21 2005 *)

Extensions

More terms from Robert G. Wilson v, Jan 21 2005

A101458 Prime digits in the decimal expansion of Khinchin's constant.

Original entry on oeis.org

2, 5, 5, 2, 5, 3, 5, 3, 7, 3, 5, 7, 5, 3, 2, 3, 2, 2, 3, 2, 5, 3, 5, 5, 2, 3, 5, 5, 5, 7, 2, 5, 5, 3, 7, 5, 2, 2, 7, 3, 7, 7, 5, 5, 3, 5, 5, 2, 2, 7, 7, 7, 7, 3, 5, 7, 2, 5, 3, 3, 3, 2, 5, 3, 5, 2, 3, 5, 2, 3, 3, 2, 2, 3, 3, 2, 5, 2, 2, 2, 3, 7, 7, 2, 3, 7, 3, 7, 5, 3, 5, 3, 3, 7, 2, 3, 3, 5, 7, 7, 2, 2, 7, 7, 2
Offset: 1

Views

Author

Sebastian Gutierrez (sgutierr(AT)alum.mit.edu), Jan 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[RealDigits[Khinchin,10,263][[1]],PrimeQ] (* James C. McMahon, Jan 01 2024 *)

Extensions

More terms from Robert G. Wilson v, Jan 21 2005

A343422 Number of digits of earliest prime encountered at each digit n of the decimal expansion of Pi.

Original entry on oeis.org

1, 5, 2, 7, 1, 13, 1, 3, 1, 1, 1, 2, 2, 1, 4, 1, 1, 1, 3057, 6, 3490, 1, 3, 2, 1, 1, 2, 1, 1, 1, 20, 1, 1, 1, 9, 4, 2, 2, 2, 1, 4, 7, 6329, 1, 53, 3, 1, 1, 1, 19128, 1, 1, 4, 1, 2, 2, 1, 12, 39, 45, 35, 1, 30, 1, 1, 1, 1, 4834, 24, 341, 86, 127, 127, 1, 143
Offset: 1

Views

Author

Bill McEachen, Aug 21 2021

Keywords

Comments

The underlying approach is an alternate way to spawn primes from Pi (and other irrational values) compared to A005042. Generally speaking, there should be a prime for every known digit (sequence is likely infinite, use -1 for any term without solution). By its construction, every prime will not be encountered, and primes will be repeated, especially 2,3,5 and 7. Large primes will be seen within the prime sequence. Note that concatenations with leading 0 will duplicate that of the subsequent concatenation having nonzero leading digit.
The corresponding primes are: 3, 14159, 41, 1592653, 5, 9265358979323, 2, 653, 5, 3, 5, 89, 97, 7, 9323, 3, 2, 3, ....

Examples

			The first term is the trivial prime 3, having length=1 digit, so a(1)=1.
The next evaluation starts at digit 1:  1 is not prime, 14 is composite, 141 is composite, 1415 is composite, but 14159 is prime, so a(2)=5.
The next evaluation starts at digit 4:  4 is composite, 41 is prime, so a(3)=2.
The 33rd and 34th digits of Pi are 0 and 2, and "02" converts to 2, a 1-digit prime.  Thus, a(33) = 1.
		

Crossrefs

Programs

  • PARI
    lista(p) = {default(realprecision, p); my(x=Pi, nb=#Str(x), d=digits(floor(x*10^(nb-1)))); for (i=1, #d, my(k=i, j=d[i]); while (! ispseudoprime(j), k++; if (k>#d, j=0; break, j = 10*j+d[k])); if (j==0, break, print1(#Str(j), ", ")););} \\ Michel Marcus, Sep 15 2021
    
  • Python
    from sympy import S, isprime
    pi_digits = str(S.Pi.n(10**5+1)).replace(".", "")[:-1]
    def a(n):
        s, k = pi_digits[n-1], 1
        while not isprime(int(s)):
            s, k = s + pi_digits[n-1+k], k + 1
        return len(str(int(s)))
    print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Aug 21 2021

Formula

a(A153031(n)) = 1. - Michel Marcus, Aug 22 2021
Showing 1-10 of 10 results.