cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A073274 A000040(n+1) - A073273(n).

Original entry on oeis.org

0, 1, 0, 2, 0, 2, 0, 0, 3, -1, 2, 2, 0, 0, 1, 3, -1, 2, 2, -1, 2, 0, 0, 3, 2, 0, 2, 0, -4, 6, 0, 3, -3, 5, -1, 1, 2, 0, 1, 3, -3, 5, 0, 2, -4, 1, 5, 2, 0, 0, 3, -3, 3, 1, 1, 3, -1, 2, 2, -3, -1, 6, 2, 0, -4, 5, -1, 5, 0, 0, 0, 2, 1, 2, 0, 0, 3, -1, 0, 5, -3, 5, -1, 2, 0, 0, 3, 2, 0, -3, 3, 3, -1, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Examples

			For n=11, A000040(11)*A000040(13) = 31*41 = 1271 = 35*35+46, therefore A073273(11)=35; a(11) = A000040(12)-A073273(11) = 37-35 = +2.
		

Crossrefs

Cf. A073272.

Programs

  • PARI
    vector(80, n, prime(n+1) - floor(sqrt(prime(n)*prime(n+2)))) \\ Michel Marcus, Jun 02 2015
    
  • PARI
    a(n,p=prime(n))=my(q=nextprime(p+1),r=nextprime(q+1)); q - sqrtint(p*r) \\ Charles R Greathouse IV, Jun 02 2015

A126990 Largest prime preceding geometric mean of prime(n) and prime(n+2).

Original entry on oeis.org

3, 3, 7, 7, 13, 13, 19, 23, 23, 31, 31, 37, 43, 47, 47, 53, 61, 61, 67, 73, 73, 83, 89, 89, 97, 103, 103, 109, 113, 113, 131, 131, 139, 139, 151, 151, 157, 167, 167, 173, 181, 181, 193, 193, 199, 199, 211, 223, 229, 233, 233, 241, 241, 251, 257, 263, 271, 271, 277
Offset: 1

Views

Author

Artur Jasinski, Jan 01 2007

Keywords

Comments

With duplicates removed, seems to be a subsequence of A105399 and A105792. - M. F. Hasler, Jun 14 2007

References

  • P. Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004.

Crossrefs

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions` a = {}; Do[AppendTo[a,PreviousPrime[Sqrt[(Prime[x])*(Prime[x + 2])]]], {x, 1, 100}]; a
  • PARI
    A126990(n)={ n=sqrtint(prime(n)*prime(n+2)); if( 0==n%2, n--); while(!isprime(n), n-=2); n } /* then vector(50,n,A126990(n)) displays a list of values, M. F. Hasler, Jun 14 2007 */
    
  • PARI
    a(n)= precprime(sqrtint(prime(n)*prime(n+2))); \\ Michel Marcus, Nov 07 2013

Formula

a(n) = A007917(A073273(n)). - Michel Marcus, Nov 07 2013

Extensions

Edited by M. F. Hasler, Jun 14 2007
Definition changed so that offset is now 1 by Michel Marcus, Nov 07 2013

A073271 a(n) = floor( prime(n)*prime(n+2) / prime(n+1) ).

Original entry on oeis.org

3, 4, 7, 8, 14, 14, 20, 23, 24, 34, 34, 38, 44, 48, 52, 54, 64, 64, 68, 76, 76, 84, 90, 92, 98, 104, 104, 110, 122, 116, 132, 132, 146, 140, 154, 156, 160, 168, 172, 174, 188, 182, 194, 194, 208, 210, 214, 224, 230, 234, 234, 248, 246, 256, 262, 264, 274, 274
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2002

Keywords

Comments

A000040(n) < a(n) < A000040(n+2);
Conjecture: a(n) is even except for a(1)=3, a(3)=7 and a(8)=23 (A073272(n)=0).
Conjecture: when a(n) = a(n+1) then A001223(n+1) = A001223(n) + A001223(n+2). - Gionata Neri, May 31 2015

Examples

			A000040(10)*A000040(12)/A000040(11) = 29*37/31 = 1073/31 = (34*31+19)/31, therefore a(10)=34; A073272(10) = A000040(11)-a(10) = 31-34 = -3.
		

Crossrefs

Programs

  • Magma
    [Floor(NthPrime(n)*NthPrime(n+2) / NthPrime(n+1)): n in [1..60]]; // Vincenzo Librandi, May 31 2015
  • Mathematica
    Table[Floor[Prime[n] Prime[n + 2] / Prime[n + 1]], {n, 60}] (* Vincenzo Librandi, May 31 2015 *)
    Floor[(#[[1]]#[[3]])/#[[2]]]&/@Partition[Prime[Range[60]],3,1] (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    vector(100, n, (prime(n)*prime(n+2))\prime(n+1)) \\ Michel Marcus, May 31 2015
    

A118469 Triangle read by rows: a(n,m) = If(n = 1, then 1, else Prime(n) - 1 + Sum_{k=n..m} (Prime(k + 1) - Prime(k))/2 ).

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 6, 7, 8, 1, 7, 8, 9, 11, 1, 9, 10, 11, 13, 14, 1, 10, 11, 12, 14, 15, 17, 1, 12, 13, 14, 16, 17, 19, 20, 1, 15, 16, 17, 19, 20, 22, 23, 25, 1, 16, 17, 18, 20, 21, 23, 24, 26, 29, 1, 19, 20, 21, 23, 24, 26, 27, 29, 32, 33, 1, 21, 22, 23, 25, 26, 28, 29, 31, 34, 35
Offset: 1

Views

Author

Roger L. Bagula, May 04 2006

Keywords

Comments

An improved triangular Goldbach sequence in which the gap sum is taken from a start at n.

Examples

			1
1, 3
1, 4, 5
1, 6, 7, 8
1, 7, 8, 9, 11
1, 9, 10, 11, 13, 14
1, 10, 11, 12, 14, 15, 17
1, 12, 13, 14, 16, 17, 19, 20
1, 15, 16, 17, 19, 20, 22, 23, 25
1, 16, 17, 18, 20, 21, 23, 24, 26, 29
		

Crossrefs

Main diagonal: A078444, 2nd diagonal: A073273.

Programs

  • Mathematica
    t[n_, m_] := If[n == 1, 1, Prime[n] + Sum[(Prime[k + 1] - Prime[k])/2, {k, n, m}] - 1]; Table[ t[n, m], {m, 11}, {n, m}] // Flatten
Showing 1-4 of 4 results.