cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A073492 Numbers having at least one prime gap in their factorization.

Original entry on oeis.org

10, 14, 20, 21, 22, 26, 28, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102, 104, 106, 110, 111, 112, 114, 115, 116, 117, 118, 119, 122, 123, 124, 126
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A073490(a(n)) > 0.
A137794(a(n))=0, complement of A073491. - Reinhard Zumkeller, Feb 11 2008

Crossrefs

Programs

  • Haskell
    a073492 n = a073492_list !! (n-1)
    a073492_list = filter ((> 0) . a073490) [1..]
    -- Reinhard Zumkeller, Dec 20 2013
  • Mathematica
    pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Select[Range[126],Total[pa @@@ Partition[First /@ FactorInteger[#], 2, 1]] > 0 &] (* Jayanta Basu, Jul 01 2013 *)

A356233 Number of integer factorizations of n into gapless numbers (A066311).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 4, 1, 1, 2, 5, 1, 4, 1, 2, 1, 1, 1, 7, 2, 1, 3, 2, 1, 4, 1, 7, 1, 1, 2, 9, 1, 1, 1, 3, 1, 2, 1, 2, 4, 1, 1, 12, 2, 2, 1, 2, 1, 7, 1, 3, 1, 1, 1, 8, 1, 1, 2, 11, 1, 2, 1, 2, 1, 2, 1, 16, 1, 1, 4, 2, 2, 2, 1, 5, 5, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define a number to be gapless (listed by A066311) iff its prime indices cover an interval of positive integers.

Examples

			The counted factorizations of n = 2, 4, 8, 12, 24, 36, 48:
  (2)  (4)    (8)      (12)     (24)       (36)       (48)
       (2*2)  (2*4)    (2*6)    (3*8)      (4*9)      (6*8)
              (2*2*2)  (3*4)    (4*6)      (6*6)      (2*24)
                       (2*2*3)  (2*12)     (2*18)     (3*16)
                                (2*2*6)    (3*12)     (4*12)
                                (2*3*4)    (2*2*9)    (2*3*8)
                                (2*2*2*3)  (2*3*6)    (2*4*6)
                                           (3*3*4)    (3*4*4)
                                           (2*2*3*3)  (2*2*12)
                                                      (2*2*2*6)
                                                      (2*2*3*4)
                                                      (2*2*2*2*3)
		

Crossrefs

The shortest of these factorizations is listed at A356234, length A287170.
A000005 counts divisors.
A001055 counts factorizations.
A001221 counts distinct prime factors, sum A001414.
A003963 multiplies together the prime indices.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).
A356226 lists the lengths of maximal gapless submultisets of prime indices:
- length: A287170
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356232

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sqq[n_]:=Max@@Differences[primeMS[n]]<=1;
    Table[Length[Select[facs[n],And@@sqq/@#&]],{n,100}]

A356226 Irregular triangle giving the lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 3, 2, 1, 1, 3, 1, 5, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 5, 2, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle  begins: {}, {1}, {1}, {2}, {1}, {2}, {1}, {3}, {2}, {1,1}, {1}, {3}, {1}, {1,1}, {2}, {4}, {1}, {3}, {1}, {2,1}, ... For example, the prime indices of 20 are {1,1,3}, which separates into maximal gapless submultisets {{1,1},{3}}, so row 20 is (2,1).
The prime indices of 18564 are {1,1,2,4,6,7}, which separates into {1,1,2}, {4}, {6,7}, so row 18564 is (3,1,2). This corresponds to the factorization 18564 = 12 * 7 * 221.
		

Crossrefs

Row sums are A001222.
Singleton row positions are A073491, complement A073492.
Length-2,3,4 row positions are A073493-A073495.
Row lengths are A287170, firsts A066205.
Row minima are A356227.
Row maxima are A356228.
Bisected run-lengths are A356229.
Standard composition numbers of rows are A356230.
Heinz numbers of rows are A356231.
Positions of first appearances are A356232.
A001221 counts distinct prime factors, with sum A001414.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length/@Split[primeMS[n],#1>=#2-1&],{n,100}]

A073493 Numbers having exactly one prime gap in their factorization.

Original entry on oeis.org

10, 14, 20, 21, 22, 26, 28, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102, 104, 106, 111, 112, 114, 115, 116, 117, 118, 119, 122, 123, 124, 126, 129
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Examples

			200 is a term, as 200 = 2*2*2*5*5 with one gap between 2 and 5.
		

Crossrefs

Programs

  • Haskell
    a073493 n = a073493_list !! (n-1)
    a073493_list = filter ((== 1) . a073490) [1..]
    -- Reinhard Zumkeller, Dec 20 2013
    
  • Mathematica
    pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Select[Range[130], Total[pa @@@ Partition[First /@ FactorInteger[#], 2, 1]] == 1 &] (* Jayanta Basu, Jul 01 2013 *)
  • Python
    from sympy import primefactors, nextprime
    def ok(n):
        pf = primefactors(n)
        return sum(p2 != nextprime(p1) for p1, p2 in zip(pf[:-1], pf[1:])) == 1
    print(list(filter(ok, range(1, 130)))) # Michael S. Branicky, Oct 14 2021

Formula

A073490(a(n)) = 1.

A356230 The a(n)-th composition in standard order is the sequence of lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 4, 2, 3, 1, 4, 1, 3, 2, 8, 1, 4, 1, 5, 3, 3, 1, 8, 2, 3, 4, 5, 1, 4, 1, 16, 3, 3, 2, 8, 1, 3, 3, 9, 1, 5, 1, 5, 4, 3, 1, 16, 2, 6, 3, 5, 1, 8, 3, 9, 3, 3, 1, 8, 1, 3, 5, 32, 3, 5, 1, 5, 3, 6, 1, 16, 1, 3, 4, 5, 2, 5, 1, 17, 8, 3, 1, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A multiset is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}. These have lengths (3,1,2), which is the 38th composition in standard order, so a(18564) = 38.
		

Crossrefs

Numbers grouped by number of gaps in prime indices are A073491-A073495.
These are the standard composition numbers of rows of A356226.
Using Heinz numbers instead of standard compositions gives A356231.
Positions of first appearances are A356603, sorted A356232.
A001221 counts distinct prime factors, with sum A001414.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A066099 lists compositions in standard order.
A132747 counts non-isolated divisors, complement A132881.
A333627 represents the run-lengths of standard compositions.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

A000120(a(n)) = A287170(n).
A333766(a(n)) = A356228(n).
A333768(a(n)) = A356227(n).

A073490 Number of prime gaps in factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A137723(n) is the smallest number of the first occurring set of exactly n consecutive numbers with at least one prime gap in their factorization: a(A137723(n)+k)>0 for 0<=kA137723(n)-1)=a(A137723(n)+n)=0. - Reinhard Zumkeller, Feb 09 2008

Examples

			84 = 2*2*3*7 with one gap between 3 and 7, therefore a(84) = 1;
110 = 2*5*11 with two gaps: between 2 and 5 and between 5 and 11, therefore a(110) = 2.
		

Crossrefs

Programs

  • Haskell
    a073490 1 = 0
    a073490 n = length $ filter (> 1) $ zipWith (-) (tail ips) ips
       where ips = map a049084 $ a027748_row n
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Maple
    A073490 := proc(n)
        local a,plist ;
        plist := sort(convert(numtheory[factorset](n),list)) ;
        a := 0 ;
        for i from 2 to nops(plist) do
            if op(i,plist) <> nextprime(op(i-1,plist)) then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc:
    seq(A073490(n),n=1..110) ; # R. J. Mathar, Oct 27 2019
  • Mathematica
    gaps[n_Integer/;n>0]:=If[n===1, 0, Complement[Prime[PrimePi[Rest[ # ]]-1], # ]&[First/@FactorInteger[n]]]; Table[Length[gaps[n]], {n, 1, 120}] (* Wouter Meeussen, Oct 30 2004 *)
    pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Table[Total[pa @@@ Partition[First /@ FactorInteger[n], 2, 1]], {n, 120}] (* Jayanta Basu, Jul 01 2013 *)
  • Python
    from sympy import primefactors, nextprime
    def a(n):
        pf = primefactors(n)
        return sum(p2 != nextprime(p1) for p1, p2 in zip(pf[:-1], pf[1:]))
    print([a(n) for n in range(1, 121)]) # Michael S. Branicky, Oct 14 2021

Formula

a(n) = A073484(A007947(n)).
a(A000040(n))=0; a(A000961(n))=0; a(A006094(n))=0; a(A002110(n))=0; a(A073485(n))=0.
a(A073486(n))>0; a(A073487(n)) = 1; a(A073488(n))=2; a(A073489(n))=3.
a(n)=0 iff A073483(n) = 1.
a(A097889(n)) = 0. - Reinhard Zumkeller, Nov 20 2004
0 <= a(m*n) <= a(m) + a(n) + 1. A137794(n) = 0^a(n). - Reinhard Zumkeller, Feb 11 2008

Extensions

More terms from Franklin T. Adams-Watters, May 19 2006

A356231 Heinz number of the sequence (A356226) of lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 5, 3, 4, 2, 5, 2, 4, 3, 7, 2, 5, 2, 6, 4, 4, 2, 7, 3, 4, 5, 6, 2, 5, 2, 11, 4, 4, 3, 7, 2, 4, 4, 10, 2, 6, 2, 6, 5, 4, 2, 11, 3, 6, 4, 6, 2, 7, 4, 10, 4, 4, 2, 7, 2, 4, 6, 13, 4, 6, 2, 6, 4, 6, 2, 11, 2, 4, 5, 6, 3, 6, 2, 14, 7, 4, 2, 10
Offset: 1

Views

Author

Gus Wiseman, Aug 18 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A multiset is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}. These have lengths (3,1,2), with Heinz number 30, so a(18564) = 30.
		

Crossrefs

Positions of prime terms are A073491, complement A073492.
Positions of terms with bigomega 2-4 are A073493-A073495.
Applying bigomega gives A287170, firsts A066205, even bisection A356229.
These are the Heinz numbers of the rows of A356226.
Minimal/maximal prime indices are A356227/A356228.
A version for standard compositions is A356230, firsts A356232/A356603.
A001221 counts distinct prime factors, with sum A001414.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@Length/@Split[primeMS[n],#1>=#2-1&],{n,100}]

Formula

A001222(a(n)) = A287170(n).
A055396(a(n)) = A356227(n).
A061395(a(n)) = A356228(n).

A356234 Irregular triangle read by rows where row n is the ordered factorization of n into maximal gapless divisors.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 2, 5, 11, 12, 13, 2, 7, 15, 16, 17, 18, 19, 4, 5, 3, 7, 2, 11, 23, 24, 25, 2, 13, 27, 4, 7, 29, 30, 31, 32, 3, 11, 2, 17, 35, 36, 37, 2, 19, 3, 13, 8, 5, 41, 6, 7, 43, 4, 11, 45, 2, 23, 47, 48, 49, 2, 25, 3, 17, 4, 13, 53, 54, 5, 11, 8
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2022

Keywords

Comments

Row-products are the positive integers 1, 2, 3, ...

Examples

			The first 16 rows:
   1 =
   2 = 2
   3 = 3
   4 = 4
   5 = 5
   6 = 6
   7 = 7
   8 = 8
   9 = 9
  10 = 2 * 5
  11 = 11
  12 = 12
  13 = 13
  14 = 2 * 7
  15 = 15
  16 = 16
The factorization of 18564 is 18564 = 12*7*221, so row 18564 is {12,7,221}.
		

Crossrefs

Row-lengths are A287170, firsts A066205, even bisection A356229.
Applying bigomega to all parts gives A356226, statistics A356227-A356232.
A001055 counts factorizations.
A001221 counts distinct prime factors, sum A001414.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@#&/@Split[primeMS[n],#1>=#2-1&],{n,100}]

A356228 Greatest size of a gapless submultiset of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 3, 1, 5, 1, 1, 2, 4, 1, 1, 1, 3, 1, 2, 1, 2, 3, 1, 1, 5, 2, 2, 1, 2, 1, 4, 1, 3, 1, 1, 1, 4, 1, 1, 2, 6, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 3, 2, 2, 2, 1, 4, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless intervals: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 700 are {1,1,3,3,4}, with maximal gapless submultisets {1,1}, {3,3,4}, so a(700) = 3.
The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 3.
		

Crossrefs

Positions of first appearances are A000079.
The maximal gapless submultisets are counted by A287170, firsts A066205.
These are the row-maxima of A356226, firsts A356232.
The smallest instead of greatest size is A356227.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.
A356069 counts gapless divisors.
A356224 counts even gapless divisors, complement A356225.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Max@@Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

a(n) = A333766(A356230(n)).
a(n) = A061395(A356231(n)).

A356229 Number of maximal gapless submultisets of the prime indices of 2n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
This is a bisection of A287170, but is important in its own right because the even numbers are exactly those whose prime indices begin with 1.

Examples

			The prime indices of 2*9282 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(9282) = 3.
		

Crossrefs

This is the even (bisected) case of A287170, firsts A066205.
Alternate row-lengths of A356226, minima A356227(2n), maxima A356228(2n).
A001221 counts distinct prime factors, sum A001414.
A001222 counts prime indices, listed by A112798, sum A056239.
A003963 multiplies together the prime indices of n.
A073093 counts the prime indices of 2n.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Split[primeMS[2n],#1>=#2-1&]],{n,100}]
  • PARI
    A287170(n) = { my(f=factor(n)); if(#f~==0, return (0), return(#f~ - sum(i=1, #f~-1, if (primepi(f[i, 1])+1 == primepi(f[i+1, 1]), 1, 0)))); };
    A356229(n) = A287170(2*n); \\ Antti Karttunen, Jan 19 2025

Formula

a(n) = A287170(2n).

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 19 2025
Showing 1-10 of 13 results. Next