cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073576 Number of partitions of n into squarefree parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 21, 28, 36, 47, 60, 76, 96, 120, 150, 185, 228, 280, 342, 416, 504, 608, 731, 877, 1048, 1249, 1484, 1759, 2079, 2452, 2885, 3387, 3968, 4640, 5413, 6304, 7328, 8504, 9852, 11395, 13159, 15172, 17468, 20082, 23056, 26434, 30267
Offset: 0

Views

Author

Vladeta Jovovic, Aug 27 2002

Keywords

Comments

Euler transform of the absolute values of A008683. - Tilman Neumann, Dec 13 2008
Euler transform of A008966. - Vaclav Kotesovec, Mar 31 2018

Crossrefs

Cf. A058647.
Cf. A087188.
Cf. A225244.
Cf. A114374.

Programs

  • Haskell
    a073576 = p a005117_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jun 01 2015
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          abs(mobius(d)), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 05 2015
  • Mathematica
    Table[Length[Select[Boole /@ Thread /@ SquareFreeQ /@ IntegerPartitions[n], FreeQ[#, 0] &]], {n, 48}] (* Jayanta Basu, Jul 02 2013 *)
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*Abs[MoebiusMu[d]], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 10 2015, after Alois P. Heinz *)
    nmax = 60; CoefficientList[Series[Exp[Sum[Sum[Abs[MoebiusMu[k]] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
  • Python
    from functools import lru_cache
    from sympy import mobius, divisors
    @lru_cache(maxsize=None)
    def A073576(n): return sum(sum(d*abs(mobius(d)) for d in divisors(i, generator=True))*A073576(n-i) for i in range(1,n+1))//n if n else 1 # Chai Wah Wu, Aug 23 2024

Formula

G.f.: 1/Product_{k>0} (1-x^A005117(k)).
a(n) = 1/n*Sum_{k=1..n} A048250(k)*a(n-k).
a(n) = A000041(n) - A114374(n) - A117395(n), n>0. - Reinhard Zumkeller, Mar 11 2006
G.f.: 1 + Sum_{i>=1} mu(i)^2*x^i / Product_{j=1..i} (1 - mu(j)^2*x^j). - Ilya Gutkovskiy, Jun 05 2017
a(n) ~ exp(2*sqrt(n)) / (4*Pi^(3/2)*n^(1/4)). - Vaclav Kotesovec, Mar 24 2018