cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 72 results. Next

A008966 a(n) = 1 if n is squarefree, otherwise 0.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
The infinite lower triangular matrix with A008966 on the main diagonal and the rest zeros is the square of triangle A143255. - Gary W. Adamson, Aug 02 2008

Crossrefs

Cf. A005117, A008836 (Dirichlet inverse), A013928 (partial sums).
Parity of A002033.
Cf. A082020 (Dgf at s=2), A157289 (Dgf at s=3), A157290 (Dgf at s=4).

Programs

  • Haskell
    a008966 = abs . a008683
    -- Reinhard Zumkeller, Dec 13 2015, Dec 15 2014, May 27 2012, Jan 25 2012
    
  • Magma
    [ Abs(MoebiusMu(n)) : n in [1..100]];
    
  • Maple
    A008966 := proc(n) if numtheory[issqrfree](n) then 1 ; else 0 ; end if; end proc: # R. J. Mathar, Mar 14 2011
  • Mathematica
    A008966[n_] := Abs[MoebiusMu[n]]; Table[A008966[n], {n, 100}] (* Enrique Pérez Herrero, Apr 15 2010 *)
    Table[If[SquareFreeQ[n],1,0],{n,100}] (* or *) Boole[SquareFreeQ/@ Range[ 100]] (* Harvey P. Dale, Feb 28 2015 *)
  • MuPAD
    func(abs(numlib::moebius(n)), n):
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1+X))[n]
    
  • PARI
    a(n)=issquarefree(n) \\ Michel Marcus, Feb 22 2015
    
  • Python
    from sympy import factorint
    def A008966(n): return int(max(factorint(n).values(),default=1)==1) # Chai Wah Wu, Apr 05 2023

Formula

Dirichlet g.f.: zeta(s)/zeta(2s).
a(n) = abs(mu(n)), where mu is the Moebius function (A008683).
a(n) = 0^(bigomega(n) - omega(n)), where bigomega(n) and omega(n) are the numbers of prime factors of n with and without repetition (A001222, A001221, A046660). - Reinhard Zumkeller, Apr 05 2003
Multiplicative with p^e -> 0^(e - 1), p prime and e > 0. - Reinhard Zumkeller, Jul 15 2003
a(n) = 0^(A046951(n) - 1). - Reinhard Zumkeller, May 20 2007
a(n) = 1 - A107078(n). - Reinhard Zumkeller, Oct 03 2008
a(n) = floor(rad(n)/n), where rad() is A007947. - Enrique Pérez Herrero, Nov 13 2009
A175046(n) = a(n)*A073311(n). - Reinhard Zumkeller, Apr 05 2010
a(n) = floor(A000005(n^2)/A007425(n)). - Enrique Pérez Herrero, Apr 15 2010
a(A005117(n)) = 1; a(A013929(n)) = 0; a(n) = A013928(n + 1) - A013928(n). - Reinhard Zumkeller, Jul 05 2010
a(n) * A112526(n) = A063524(n). - Reinhard Zumkeller, Sep 16 2011
a(n) = mu(n) * lambda(n) = A008836(n) * A008683(n). - Enrique Pérez Herrero, Nov 29 2013
a(n) = Sum_{d|n} 2^omega(d)*mu(n/d). - Geoffrey Critzer, Feb 22 2015
a(n) = A085357(A156552(n)). - Antti Karttunen, Mar 06 2017
Limit_{n->oo} (1/n)*Sum_{j=1..n} a(j) = 6/Pi^2. - Andres Cicuttin, Aug 13 2017
a(1) = 1; a(n) = -Sum_{d|n, d < n} (-1)^bigomega(n/d) * a(d). - Ilya Gutkovskiy, Mar 10 2021

Extensions

Deleted an unclear comment. - N. J. A. Sloane, May 30 2021

A304713 Squarefree numbers whose prime indices are pairwise indivisible. Heinz numbers of strict integer partitions with pairwise indivisible parts.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of entries together with their corresponding multiset multisystems (see A302242) begins:
1:  {}
2:  {{}}
3:  {{1}}
5:  {{2}}
7:  {{1,1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
35: {{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],SquareFreeQ[#]&&Select[Tuples[PrimePi/@First/@FactorInteger[#],2],UnsameQ@@#&&Divisible@@#&]==={}&]

A376590 Second differences of consecutive squarefree numbers (A005117). First differences of A076259.

Original entry on oeis.org

0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 3, -2, 0, 0, -1, 0, 1, -1, 2, -2, 0, 1, -1, 0, 1, -1, 2, -2, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 1, 2, -3, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 2, -2, 3, -2, -1
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2024

Keywords

Examples

			The squarefree numbers (A005117) are:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
with first differences (A376590):
  0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
Zeros are A376591, complement A376592.
Sorted positions of first appearances are A376655.
A000040 lists the prime numbers, differences A001223.
A001597 lists perfect-powers, complement A007916.
A005117 lists squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A333254 lists run-lengths of differences between consecutive primes.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
For squarefree numbers: A076259 (first differences), A376591 (inflections and undulations), A376592 (nonzero curvature), A376655 (sorted first positions).

Programs

  • Mathematica
    Differences[Select[Range[100],SquareFreeQ],2]
  • Python
    from math import isqrt
    from sympy import mobius
    def A376590(n):
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        a = iterfun(f,n)
        b = iterfun(lambda x:f(x)+1,a)
        return a+iterfun(lambda x:f(x)+2,b)-(b<<1) # Chai Wah Wu, Oct 02 2024

A002100 a(n) = number of partitions of n into semiprimes (more precisely, number of ways of writing n as a sum of products of 2 distinct primes).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 2, 2, 0, 2, 1, 3, 2, 3, 1, 4, 2, 4, 3, 5, 4, 7, 3, 6, 5, 8, 6, 10, 6, 10, 9, 12, 9, 15, 11, 16, 14, 18, 14, 22, 19, 25, 22, 27, 23, 33, 29, 36, 33, 40, 38, 49, 43, 53, 51, 61, 57, 71, 64, 77, 76, 89, 86, 102, 96, 113, 111, 128, 125
Offset: 1

Views

Author

Keywords

Examples

			a(20) = 2: 20 = 2*3 + 2*7 = 2*5 + 2*5.
		

References

  • L. M. Chawla and S. A. Shad, On a restricted partition function t(n) and its table, J. Natural Sciences and Mathematics, 9 (1969), 217-221. Math. Rev. 41 #6761.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002100 = p a006881_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Mar 21 2014
  • Mathematica
    a[n_] := SeriesCoefficient[1/Product[If[SquareFreeQ[k] && PrimeNu[k] == 2, 1 - z^k, 1], {k, 1, n}], {z, 0, n}];
    Array[a, 100] (* Jean-François Alcover, Nov 26 2020, after PARI *)
  • PARI
    a(n)=polcoeff(1/prod(k=1,n,if(issquarefree(k)*if(omega(k)-2,0,1),1-z^k,1))+O(z^(n+1)),n)
    

Extensions

More terms from Benoit Cloitre, Jun 01 2003

A377046 Array read by downward antidiagonals where A(n,k) is the n-th term of the k-th differences of nonsquarefree numbers.

Original entry on oeis.org

4, 8, 4, 9, 1, -3, 12, 3, 2, 5, 16, 4, 1, -1, -6, 18, 2, -2, -3, -2, 4, 20, 2, 0, 2, 5, 7, 3, 24, 4, 2, 2, 0, -5, -12, -15, 25, 1, -3, -5, -7, -7, -2, 10, 25, 27, 2, 1, 4, 9, 16, 23, 25, 15, -10, 28, 1, -1, -2, -6, -15, -31, -54, -79, -94, -84, 32, 4, 3, 4, 6, 12, 27, 58, 112, 191, 285, 369
Offset: 0

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Comments

Row k is the k-th differences of A013929.

Examples

			Array form:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ---------------------------------------------------------
  k=0:   4     8     9    12    16    18    20    24    25
  k=1:   4     1     3     4     2     2     4     1     2
  k=2:  -3     2     1    -2     0     2    -3     1    -1
  k=3:   5    -1    -3     2     2    -5     4    -2     4
  k=4:  -6    -2     5     0    -7     9    -6     6    -7
  k=5:   4     7    -5    -7    16   -15    12   -13    10
  k=6:   3   -12    -2    23   -31    27   -25    23   -13
  k=7: -15    10    25   -54    58   -52    48   -36    13
  k=8:  25    15   -79   112  -110   100   -84    49     1
  k=9: -10   -94   191  -222   210  -184   133   -48   -57
Triangle form:
   4
   8   4
   9   1  -3
  12   3   2   5
  16   4   1  -1  -6
  18   2  -2  -3  -2   4
  20   2   0   2   5   7   3
  24   4   2   2   0  -5 -12 -15
  25   1  -3  -5  -7  -7  -2  10  25
  27   2   1   4   9  16  23  25  15 -10
  28   1  -1  -2  -6 -15 -31 -54 -79 -94 -84
  32   4   3   4   6  12  27  58 112 191 285 369
		

Crossrefs

Initial rows: A013929, A078147, A376593.
The version for primes is A095195, noncomposites A376682, composites A377033.
A version for partitions is A175804, cf. A053445, A281425, A320590.
For squarefree numbers we have A377038, sums A377039, absolute A377040.
Triangle row-sums are A377047, absolute version A377048.
Column n = 1 is A377049, for squarefree A377041, for prime A007442 or A030016.
First position of 0 in each row is A377050.
For prime-power instead of nonsquarefree we have A377051.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,SquareFreeQ[#]&]&,4,2*nn],k],nn],{k,0,nn}]
    Table[t[[j,i-j+1]],{i,nn},{j,i}]

Formula

A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A013929(i+k).

A087188 Number of partitions of n into distinct squarefree parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 4, 4, 5, 6, 6, 8, 9, 10, 13, 14, 16, 18, 20, 24, 27, 30, 35, 37, 42, 47, 51, 59, 64, 72, 81, 88, 98, 109, 120, 134, 147, 163, 179, 195, 216, 236, 258, 284, 310, 339, 371, 403, 441, 480, 523, 572, 621, 675, 734, 796, 865, 937, 1014, 1100, 1189
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 24 2003

Keywords

Examples

			n=9: 5+3+1 = 6+2+1 = 6+3 = 7+2: a(9)=4;
n=10: 5+3+2 = 6+3+1 = 7+2+1 = 7+3 = 10: a(10)=5.
		

Crossrefs

Programs

  • Haskell
    a087188 = p a005117_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Jun 01 2015
    
  • Maple
    with(numtheory):
    b:= proc(n, i) option remember;
          `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 02 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[i*(i+1)/2 < n, 0, If[n == 0, 1, b[n, i-1] + If[i <= n && SquareFreeQ[i], b[n-i, i-1], 0]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
    nmax = 100; CoefficientList[Series[Exp[Sum[(-1)^(j + 1)/j * Sum[Abs[MoebiusMu[k]] * x^(j*k), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
  • PARI
    ok(v)=for(i=2,#v, if(v[i]==v[i-1] || !issquarefree(v[i]), return(0))); #v==0 || issquarefree(v[1])
    a(n)=my(s,u); forpart(v=n, if(ok(v), s++)); s \\ Charles R Greathouse IV, Nov 05 2017

Formula

O.g.f.: product_{i=1,2,...infinity} [1+x^A005117(i)]. - R. J. Mathar, May 16 2008
a(n) ~ exp(sqrt(2*n)) / (2^(1/4) * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Mar 24 2018

Extensions

Offset changed and a(0)=1 prepended by Reinhard Zumkeller, Jun 01 2015

A377038 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the squarefree numbers.

Original entry on oeis.org

1, 2, 1, 3, 1, 0, 5, 2, 1, 1, 6, 1, -1, -2, -3, 7, 1, 0, 1, 3, 6, 10, 3, 2, 2, 1, -2, -8, 11, 1, -2, -4, -6, -7, -5, 3, 13, 2, 1, 3, 7, 13, 20, 25, 22, 14, 1, -1, -2, -5, -12, -25, -45, -70, -92, 15, 1, 0, 1, 3, 8, 20, 45, 90, 160, 252, 17, 2, 1, 1, 0, -3, -11, -31, -76, -166, -326, -578
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Comments

Row n is the k-th differences of A005117 = the squarefree numbers.

Examples

			Array form:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ----------------------------------------------------------
  k=0:   1     2     3     5     6     7    10    11    13
  k=1:   1     1     2     1     1     3     1     2     1
  k=2:   0     1    -1     0     2    -2     1    -1     0
  k=3:   1    -2     1     2    -4     3    -2     1     1
  k=4:  -3     3     1    -6     7    -5     3     0    -2
  k=5:   6    -2    -7    13   -12     8    -3    -2     3
  k=6:  -8    -5    20   -25    20   -11     1     5    -5
  k=7:   3    25   -45    45   -31    12     4   -10    10
  k=8:  22   -70    90   -76    43    -8   -14    20   -19
  k=9: -92   160  -166   119   -51    -6    34   -39    28
Triangle form:
   1
   2   1
   3   1   0
   5   2   1   1
   6   1  -1  -2  -3
   7   1   0   1   3   6
  10   3   2   2   1  -2  -8
  11   1  -2  -4  -6  -7  -5   3
  13   2   1   3   7  13  20  25  22
  14   1  -1  -2  -5 -12 -25 -45 -70 -92
  15   1   0   1   3   8  20  45  90 160 252
		

Crossrefs

Row k=0 is A005117.
Row k=1 is A076259.
Row k=2 is A376590.
The version for primes is A095195, noncomposites A376682, composites A377033.
A version for partitions is A175804, cf. A053445, A281425, A320590.
Triangle row-sums are A377039, absolute version A377040.
Column n = 1 is A377041, for primes A007442 or A030016.
First position of 0 in each row is A377042.
For nonsquarefree instead of squarefree numbers we have A377046.
For prime-powers instead of squarefree numbers we have A377051.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
    Table[t[[j,i-j+1]],{i,nn},{j,i}]

Formula

A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A005117(i+k).

A114374 Number of partitions of n into parts that are not squarefree.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 1, 0, 0, 5, 2, 2, 0, 7, 3, 2, 0, 11, 6, 4, 3, 15, 8, 6, 3, 22, 13, 11, 6, 34, 18, 15, 9, 46, 27, 24, 17, 64, 43, 33, 23, 89, 60, 51, 37, 124, 84, 78, 51, 166, 119, 109, 78, 226, 168, 152, 118, 300, 228, 215, 166, 404, 313, 300, 230, 546, 421, 409
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 09 2006

Keywords

Comments

a(A078135(n)) = 0; a(A078137(n)) > 0.

Examples

			a(12) = #{2*2*3, 2*2*2 + 2*2, 2*2 + 2*2 + 2*2} = 3;
a(13) = #{3*3 + 2*2} = 1.
		

Crossrefs

Programs

  • Haskell
    a114374 = p a013929_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jun 01 2015
  • Maple
    with(numtheory):
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
          `if`(i>n or issqrfree(i), 0, b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 03 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n || SquareFreeQ[i], 0, b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)

Formula

a(n) = A000041(n) - A073576(n) - A117395(n). - Reinhard Zumkeller, Mar 11 2006
G.f.: Product_{k>=1} (1 - mu(k)^2*x^k)/(1 - x^k), where mu(k) is the Moebius function (A008683). - Ilya Gutkovskiy, Dec 30 2016

Extensions

Offset changed and a(0)=1 prepended by Reinhard Zumkeller, Jun 01 2015

A377049 First term of the n-th differences of the nonsquarefree numbers. Inverse zero-based binomial transform of A013929.

Original entry on oeis.org

4, 4, -3, 5, -6, 4, 3, -15, 25, -10, -84, 369, -1067, 2610, -5824, 12246, -24622, 47577, -88233, 155962, -259086, 393455, -512281, 456609, 191219, -2396571, 8213890, -21761143, 50923029, -110269263, 225991429, -444168664, 844390152, -1561482492, 2817844569
Offset: 0

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
For squarefree instead of nonsquarefree numbers we have A377041.
For antidiagonal-sums we have A377047, absolute A377048.
For first position of 0 in each row we have A377050.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=20;
    Table[First[Differences[NestList[NestWhile[#+1&, #+1,SquareFreeQ[#]&]&,4,2*nn],k]],{k,0,nn}]
    With[{nsf=Select[Range[1000],!SquareFreeQ[#]&]},Table[Differences[nsf,n],{n,0,40}]][[;;,1]] (* Harvey P. Dale, Nov 28 2024 *)

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) q(k)

A377048 Antidiagonal-sums of the absolute value of the array A377046(n,k) = n-th term of k-th differences of nonsquarefree numbers (A013929).

Original entry on oeis.org

4, 12, 13, 22, 28, 31, 39, 64, 85, 132, 395, 1103, 2650, 5868, 12297, 24694, 47740, 88731, 157744, 265744, 418463, 605929, 805692, 1104513, 2396645, 8213998, 21761334, 50923517, 110270883, 225997492, 444193562, 844498084, 1561942458, 2819780451, 4973173841
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Comments

These are the row-sums of the absolute value triangle version of A377046.

Examples

			The third antidiagonal of A377046 is (9, 1, -3), so a(3) = 13.
		

Crossrefs

The version for primes is A376681, noncomposites A376684, composites A377035.
For squarefree instead of nonsquarefree numbers we have A377040.
The non-absolute version is A377047.
For leading column we have A377049.
For first position of 0 in each row we have A377050.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,SquareFreeQ[#]&]&,4,2*nn],k],nn],{k,0,nn}];
    Total/@Table[Abs[t[[j,i-j+1]]],{i,nn},{j,i}]
Showing 1-10 of 72 results. Next