A073579 Signed primes: if prime(n) even, a(n) = 0; if prime(n) == 1 (mod 4), a(n) = prime(n); if prime(n) == -1 (mod 4), a(n) = -prime(n).
0, -3, 5, -7, -11, 13, 17, -19, -23, 29, -31, 37, 41, -43, -47, 53, -59, 61, -67, -71, 73, -79, -83, 89, 97, 101, -103, -107, 109, 113, -127, -131, 137, -139, 149, -151, 157, -163, -167, 173, -179, 181, -191, 193, 197, -199, -211, -223, -227, 229, 233, -239
Offset: 1
Examples
a(1) = 0 because prime(1)=2 is neither 4k+1 nor 4k-1. a(6) = 13 = prime(6) because 13 = 4*3 + 1. a(8) = -19 = -prime(8) because 19 = 4*5 - 1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a073579 n = p * (2 - p `mod` 4) where p = a000040 n -- Reinhard Zumkeller, Feb 28 2012
-
Magma
C := ComplexField(); [0] cat [Round(i^(NthPrime(n)-1)*NthPrime(n)): n in [2..100]]; // G. C. Greubel, Dec 31 2019
-
Maple
0, seq(I^(ithprime(n)-1)*ithprime(n), n = 2..100); # G. C. Greubel, Dec 31 2019
-
Mathematica
Join[{0},If[Mod[#,4]==1,#,-#]&/@Prime[Range[2,60]]] (* Harvey P. Dale, Feb 27 2012 *) Join[{0}, Table[p = Prime[n]; If[Mod[p, 4] == 1, p, -p], {n, 2, 100}]] (* T. D. Noe, Feb 28 2012 *)
-
PARI
forprime(p=2,239,print1(p*(2-p%4),", ")) \\ Hugo Pfoertner, Dec 17 2019
-
Sage
[0]+[I^(nth_prime(n)-1)*nth_prime(n) for n in (2..100)] # G. C. Greubel, Dec 31 2019
Formula
a(1)=0 and for i>1: a(i) = (-1)^((prime(i)-1)/2)*prime(i).
Extensions
Corrected (sign changed on 179) by Harvey P. Dale, Feb 27 2012
Comments