cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A022005 Initial members of prime triples (p, p+4, p+6).

Original entry on oeis.org

7, 13, 37, 67, 97, 103, 193, 223, 277, 307, 457, 613, 823, 853, 877, 1087, 1297, 1423, 1447, 1483, 1663, 1693, 1783, 1867, 1873, 1993, 2083, 2137, 2377, 2683, 2707, 2797, 3163, 3253, 3457, 3463, 3847, 4153, 4513, 4783, 5227, 5413, 5437, 5647, 5653, 5737, 6547
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A029710. - R. J. Mathar, May 06 2017
All terms are congruent to 1 (modulo 6). - Matt C. Anderson, May 22 2015

Crossrefs

Subsequence of A029710 and of A002476.
Subsequence of A007529.

Programs

A073648 Middle members of prime triples {p, p+2, p+6}.

Original entry on oeis.org

7, 13, 19, 43, 103, 109, 193, 229, 313, 349, 463, 643, 823, 859, 883, 1093, 1279, 1303, 1429, 1483, 1489, 1609, 1873, 1999, 2083, 2239, 2269, 2659, 2689, 3253, 3463, 3529, 3673, 3919, 4003, 4129, 4519, 4639, 4789, 4933, 4969, 5233, 5479, 5503, 5653, 6199
Offset: 1

Views

Author

Amarnath Murthy, Aug 09 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[850]],3,1],Differences[#]=={2,4}&]][[2]]  (* Harvey P. Dale, Feb 20 2011 *)

Formula

a(n) = A022004(n) + 2.

Extensions

More terms from Benoit Cloitre, Aug 13 2002

A098413 Greatest members p of prime triples (p-6, p-2, p).

Original entry on oeis.org

13, 19, 43, 73, 103, 109, 199, 229, 283, 313, 463, 619, 829, 859, 883, 1093, 1303, 1429, 1453, 1489, 1669, 1699, 1789, 1873, 1879, 1999, 2089, 2143, 2383, 2689, 2713, 2803, 3169, 3259, 3463, 3469, 3853, 4159, 4519, 4789, 5233, 5419, 5443, 5653, 5659, 5743
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 07 2004

Keywords

Comments

Subsequence of A046117; a(n) = A073649(n) + 2 = A022005(n) + 6.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(6500)|IsPrime(p) and IsPrime(p-6) and IsPrime(p-2)]; // Vincenzo Librandi, Dec 26 2010
  • Mathematica
    Transpose[Select[Partition[Prime[Range[800]],3,1],Differences[#] == {4,2}&]][[3]] (* Harvey P. Dale, Aug 21 2013 *)

A073650 Define the composite field of a prime q to be f(q) = (t,s) if p, q, r are three consecutive primes and q-p = t and r-q = s. This is a sequence of primes q with field (2,6).

Original entry on oeis.org

31, 61, 73, 151, 271, 433, 571, 601, 1033, 1063, 1231, 1291, 1321, 1453, 1621, 2131, 2341, 2383, 2551, 2713, 2791, 3301, 3541, 4021, 4051, 4093, 4651, 4723, 5101, 5443, 5521, 5641, 5743, 5851, 6271, 6361, 6571, 6703, 6961, 7213, 8011, 9001, 9043, 9343
Offset: 1

Views

Author

Amarnath Murthy, Aug 09 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[1200]],3,1],Differences[#] == {2,6}&]][[2]] (* Harvey P. Dale, Jul 23 2011 *)

Extensions

More terms from Benoit Cloitre, Aug 13 2002

A073651 Define the composite field of a prime q to be f(q) = (t,s) if p, q, r are three consecutive primes and q-p = t and r-q = s. This is a sequence of primes q with field (6,2).

Original entry on oeis.org

29, 59, 137, 179, 239, 269, 569, 599, 659, 1019, 1229, 1289, 1607, 1619, 2339, 2549, 2969, 3329, 3539, 3767, 3917, 3929, 4019, 4217, 4259, 4649, 4799, 5009, 5279, 5477, 5849, 5867, 6269, 6359, 6569, 6659, 6869, 7127, 7457, 7487, 7547, 7589, 8087, 8429, 8837, 8969, 9419, 9629
Offset: 1

Views

Author

Amarnath Murthy, Aug 09 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[1200]],3,1],Differences[#]=={6,2}&]][[2]] (* Harvey P. Dale, Jul 23 2011 *)

Extensions

Corrected and extended by Ryan Propper, Jul 10 2005
Corrected and extended by Harvey P. Dale, Jul 23 2011
Showing 1-5 of 5 results.