cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073778 a(n) = Sum_{k=0..n} T(k)*T(n-k), where T is A000073; convolution of A000073 with itself.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 5, 12, 26, 56, 118, 244, 499, 1010, 2027, 4040, 8004, 15776, 30956, 60504, 117845, 228818, 443057, 855732, 1649022, 3171128, 6086626, 11662252, 22309543, 42614178, 81286743, 154856528, 294660040, 560052736, 1063367384, 2017030256
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 10 2002

Keywords

Comments

Number of binary sequences of length n+1 that have exactly one subsequence 000. Example: a(4)=5 because we have 00010,00011,01000,10001 and 11000. Column 1 of A118390. - Emeric Deutsch, Apr 27 2006
Let (b(n)) be the p-INVERT of (1,1,1,0,0,0,0,0,0,...) using p(S) = 1 - S^2; then b(n) = a(n+3) for n >= 0. See A292324. - Clark Kimberling, Sep 15 2017

Crossrefs

Programs

  • Maple
    A073778:=proc(n) coeftayl(x^4/(1-x-x^2-x^3)^2, x=0, n); end proc: seq(A073778(n), n=0..40); # Wesley Ivan Hurt, Nov 17 2014
  • Mathematica
    CoefficientList[Series[x^4/(1-x-x^2-x^3)^2, {x, 0, 40}], x]
  • Maxima
    a(n):= sum((k+1)*sum(binomial(j,n-3*k+2*j-4)*binomial(k,j), j,0,k), k,0,n-4);
    makelist(a(n), n, 0, 30); /* Vladimir Kruchinin, Dec 14 2011 */
    
  • PARI
    T(n) = ([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
    a(n) = sum(k=0, n, T(k)*T(n-k)); \\ Michel Marcus, Oct 20 2021
  • Sage
    [( x^4/(1-x-x^2-x^3)^2 ).series(x,n+1).list()[n] for n in (0..40)] # Zerinvary Lajos, Jun 02 2009; modified by G. C. Greubel, Dec 15 2021
    

Formula

G.f.: x^4/(1 - x - x^2 - x^3)^2.
a(n) = Sum_{k=0..n-4} (k+1)*Sum_{j=0..k} binomial(j,n-3*k+2*j-4)*binomial(k,j). - Vladimir Kruchinin, Dec 14 2011
(n-2)*a(n) - (n-1)*a(n-1) - n*a(n-2) - (n+1)*a(n-3) = 0, n > 2. - Michael D. Weiner, Nov 18 2014

Extensions

Two initial zeros inserted by Hans J. H. Tuenter, Oct 20 2021