A135168
a(n) = 7^n + 5^n + 3^n + 2^n.
Original entry on oeis.org
4, 17, 87, 503, 3123, 20207, 134067, 903983, 6162243, 42326927, 292300947, 2026334063, 14085963363, 98111316047, 684331387827, 4778093469743, 33385561572483, 233393582711567, 1632228682858707, 11417969834487023, 79887637217085603, 559022711703937487
Offset: 0
a(4) = 3123 = 7^4 + 5^4 + 3^4 + 2^4 = 2401 + 625 + 81 + 16.
Cf.
A000079,
A000244,
A000351,
A000420,
A001047,
A074527,
A007689,
A135158,
A135159,
A135160,
A001551.
-
[7^n+5^n+3^n+2^n: n in [0..25]]; // Vincenzo Librandi, Jun 11 2011
-
A135168:=n->7^n+5^n+3^n+2^n; seq(A135168(k), k=0..100); # Wesley Ivan Hurt, Nov 05 2013
-
Table[7^n+5^n+3^n+2^n, {n,0,100}] (* Wesley Ivan Hurt, Nov 05 2013 *)
LinearRecurrence[{17, -101, 247, -210}, {4, 17, 87, 503}, 25] (* G. C. Greubel, Sep 30 2016 *)
-
a(n)=7^n+5^n+3^n+2^n \\ Charles R Greathouse IV, Sep 30 2016
A135161
a(n) = 7^n - 5^n - 3^n - 2^n. Constants are the prime numbers in decreasing order.
Original entry on oeis.org
-2, -3, 11, 183, 1679, 13407, 101231, 743103, 5367359, 38380287, 272649551, 1928319423, 13596611039, 95666704767, 672114757871, 4717029550143, 33080299566719, 231867445262847, 1624598512962191, 11379820536259263, 79696895378138399, 558069016462630527, 3907436831406718511
Offset: 0
a(4) = 1679 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and we can write 2401 -625 -81 -16 = 1679.
-
[7^n-5^n-3^n-2^n: n in [0..50]] // Vincenzo Librandi, Dec 14 2010
-
Table[7^n-5^n-3^n-2^n,{n,0,30}] (* or *) LinearRecurrence[{17,-101,247,-210},{-2,-3,11,183},30] (* Harvey P. Dale, Sep 23 2016 *)
-
a(n) = 7^n - 5^n - 3^n - 2^n \\ Charles R Greathouse IV, Sep 30 2016
A135162
a(n) = 7^n - 5^n - 3^n + 2^n. Constants are the prime numbers in decreasing order.
Original entry on oeis.org
0, 1, 19, 199, 1711, 13471, 101359, 743359, 5367871, 38381311, 272651599, 1928323519, 13596619231, 95666721151, 672114790639, 4717029615679, 33080299697791, 231867445524991, 1624598513486479, 11379820537307839, 79696895380235551, 558069016466824831, 3907436831415107119
Offset: 0
a(4) = 1711 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and 2401-625-81+16 = 1711.
-
[7^n-5^n-3^n+2^n: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
-
Table[7^n-5^n-3^n+2^n,{n,0,30}] (* or *) LinearRecurrence[ {17,-101,247,-210},{0,1,19,199},30] (* Harvey P. Dale, Dec 13 2013 *)
CoefficientList[Series[1/(1 - 7 x) - 1/(1 - 5 x) - 1/(1 - 3 x) + 1/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 22 2014 *)
-
a(n) = 7^n - 5^n - 3^n + 2^n \\ Charles R Greathouse IV, Sep 30 2016
A135163
a(n) = 7^n - 5^n + 3^n - 2^n.
Original entry on oeis.org
0, 3, 29, 237, 1841, 13893, 102689, 747477, 5380481, 38419653, 272767649, 1928673717, 13597673921, 95669893413, 672124323809, 4717058247957, 33080385660161, 231867703543173, 1624599287803169, 11379822860782197, 79696902351707201, 558069037383336933, 3907436894168837729
Offset: 0
a(4) = 1841 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and 2401-625+81-16 = 1841.
-
[7^n-5^n+3^n-2^n: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
-
I:=[0, 3, 29, 237]; [n le 4 select I[n] else 17*Self(n-1)-101*Self(n-2)+247*Self(n-3)-210*Self(n-4): n in [1..30]]; // Vincenzo Librandi, May 22 2014
-
CoefficientList[Series[1/(1 - 7 x) - 1/(1 - 5 x) + 1/(1 - 3 x) - 1/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 22 2014 *)
LinearRecurrence[{17,-101,247,-210},{0,3,29,237},30] (* Harvey P. Dale, Sep 17 2016 *)
-
a(n) = 7^n - 5^n + 3^n - 2^n \\ Charles R Greathouse IV, Sep 30 2016
A135164
a(n) = 7^n - 5^n + 3^n + 2^n.
Original entry on oeis.org
2, 7, 37, 253, 1873, 13957, 102817, 747733, 5380993, 38420677, 272769697, 1928677813, 13597682113, 95669909797, 672124356577, 4717058313493, 33080385791233, 231867703805317, 1624599288327457, 11379822861830773, 79696902353804353, 558069037387531237, 3907436894177226337
Offset: 0
a(4) = 1873 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and 2401-625+81+16 = 1873.
-
[7^n-5^n+3^n+2^n: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
-
I:=[2,7,37,253]; [n le 4 select I[n] else 17*Self(n-1)-101*Self(n-2)+247*Self(n-3)-210*Self(n-4): n in [1..30]]; // Vincenzo Librandi, May 22 2014
-
CoefficientList[Series[1/(1 - 7 x) - 1/(1 - 5 x) + 1/(1 - 3 x) + 1/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 22 2014 *)
Table[7^n-5^n+3^n+2^n,{n,0,30}] (* or *) LinearRecurrence[{17,-101,247,-210},{2,7,37,253},30] (* Harvey P. Dale, Jul 23 2016 *)
-
a(n)=7^n-5^n+3^n+2^n \\ Charles R Greathouse IV, Sep 30 2016
A135165
a(n) = 7^n + 5^n - 3^n - 2^n.
Original entry on oeis.org
0, 7, 61, 433, 2929, 19657, 132481, 899353, 6148609, 42286537, 292180801, 2025975673, 14084892289, 98108111017, 684321789121, 4778064706393, 33385475347969, 233393324169097, 1632227907493441, 11417967508915513, 79887630241419649, 559022690779036777, 3912205202988749761
Offset: 0
a(4) = 2929 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and 2401+625-81-16 = 2929.
-
[7^n+5^n-3^n-2^n: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
-
I:=[0,7,61,433]; [n le 4 select I[n] else 17*Self(n-1)-101*Self(n-2)+247*Self(n-3)-210*Self(n-4): n in [1..30]]; // Vincenzo Librandi, May 22 2014
-
CoefficientList[Series[1/(1 - 7 x) + 1/(1 - 5 x) - 1/(1 - 3 x) - 1/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 22 2014 *)
LinearRecurrence[{17,-101,247,-210},{0,7,61,433},30] (* Harvey P. Dale, Mar 20 2015 *)
-
a(n)=7^n+5^n-3^n-2^n \\ Charles R Greathouse IV, Sep 30 2016
A135166
a(n) = 7^n + 5^n - 3^n + 2^n.
Original entry on oeis.org
2, 11, 69, 449, 2961, 19721, 132609, 899609, 6149121, 42287561, 292182849, 2025979769, 14084900481, 98108127401, 684321821889, 4778064771929, 33385475479041, 233393324431241, 1632227908017729, 11417967509964089, 79887630243516801, 559022690783231081, 3912205202997138369
Offset: 0
a(4) = 2961 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and we can write 2401 + 625 - 81 + 16 = 2961.
-
[7^n+5^n-3^n+2^n: n in [0..50]] // Vincenzo Librandi, Dec 14 2010
-
Table[7^n+5^n-3^n+2^n,{n,0,30}] (* or *) LinearRecurrence[ {17,-101,247,-210},{2,11,69,449},30] (* Harvey P. Dale, Feb 01 2013 *)
-
a(n)=7^n+5^n-3^n+2^n \\ Charles R Greathouse IV, Sep 30 2016
A135167
a(n) = 7^n + 5^n + 3^n - 2^n. Constants are the prime numbers in decreasing order.
Original entry on oeis.org
2, 13, 79, 487, 3091, 20143, 133939, 903727, 6161731, 42325903, 292298899, 2026329967, 14085955171, 98111299663, 684331355059, 4778093404207, 33385561441411, 233393582449423, 1632228682334419, 11417969833438447, 79887637214988451, 559022711699743183, 3912205265750868979
Offset: 0
a(4)=3091 because 7^4=2401, 5^4=625, 3^4=81, 2^4=16 and we can write 2401+625+81-16=3091.
-
[7^n+5^n+3^n-2^n: n in [0..50]]; // Vincenzo Librandi, Dec 15 2010
-
Table[7^n + 5^n + 3^n - 2^n, {n, 0,50}] (* or *) LinearRecurrence[{17, -101, 247, -210}, {2, 13, 79, 487}, 50] (* G. C. Greubel, Sep 30 2016 *)
-
a(n)=7^n+5^n+3^n-2^n \\ Charles R Greathouse IV, Sep 30 2016
Showing 1-8 of 8 results.
Comments