A155602
4^n + 3^n - 1.
Original entry on oeis.org
1, 6, 24, 90, 336, 1266, 4824, 18570, 72096, 281826, 1107624, 4371450, 17308656, 68703186, 273218424, 1088090730, 4338014016, 17309009346, 69106897224, 276040168410, 1102998412176, 4408506864306, 17623567104024, 70462887356490
Offset: 0
-
[(4^n + 3^n - 1): n in [0..30]]; // Vincenzo Librandi, Oct 17 2012
-
Table[4^n + 3^n - 1, {n, 0, 50}] (* Vincenzo Librandi, Oct 17 2012 *)
LinearRecurrence[{8,-19,12},{1,6,24},30] (* Harvey P. Dale, Apr 28 2018 *)
-
a(n)=4^n+3^n-1 \\ Charles R Greathouse IV, Sep 24 2015
A074506
a(n) = 1^n + 3^n + 4^n.
Original entry on oeis.org
3, 8, 26, 92, 338, 1268, 4826, 18572, 72098, 281828, 1107626, 4371452, 17308658, 68703188, 273218426, 1088090732, 4338014018, 17309009348, 69106897226, 276040168412, 1102998412178, 4408506864308, 17623567104026
Offset: 0
-
Table[1^n + 3^n + 4^n, {n, 0, 22}]
LinearRecurrence[{8,-19,12},{3,8,26},30] (* Harvey P. Dale, May 12 2025 *)
A045584
Numbers k that divide 4^k + 3^k.
Original entry on oeis.org
1, 7, 49, 343, 2401, 2653, 16807, 18571, 117649, 129997, 823543, 909979, 1005487, 4941601, 5764801, 6369853, 7038409, 34591207, 40353607, 44588971, 49268863, 236474833, 242138449, 282475249, 312122797, 344882041, 381079573, 1655323831, 1694969143, 1872866779, 1977326743
Offset: 1
-
Select[Range[10^6], Divisible[PowerMod[3, #, #] + PowerMod[4, #, #], #] &] (* Amiram Eldar, Oct 23 2021 *)
-
isok(k) = Mod(4, k)^k + Mod(3, k)^k == 0; \\ Michel Marcus, May 16 2022
-
from itertools import islice, count
def A045584_gen(startvalue=1): # generator of terms >= startvalue
kstart = max(startvalue,1)
k3, k4 = 3**kstart, 4**kstart
for k in count(kstart):
if (k3+k4) % k == 0:
yield k
k3 *= 3
k4 *= 4
A045584_list = list(islice(A045584_gen(),10)) # Chai Wah Wu, May 16 2022
A245806
a(n) = 3^n + 10^n.
Original entry on oeis.org
2, 13, 109, 1027, 10081, 100243, 1000729, 10002187, 100006561, 1000019683, 10000059049, 100000177147, 1000000531441, 10000001594323, 100000004782969, 1000000014348907, 10000000043046721, 100000000129140163, 1000000000387420489, 10000000001162261467
Offset: 0
-
[3^n+10^n: n in [0..25]];
-
I:=[2,13]; [n le 2 select I[n] else 13*Self(n-1)-30*Self(n-2): n in [1..25]];
-
Table[(3^n + 10^n), {n, 0, 30}] (* or *) CoefficientList[Series[(2 - 13 x)/((1 - 3 x) (1 - 10 x)), {x, 0, 30}], x]
-
a(n)=3^n + 10^n \\ Charles R Greathouse IV, Aug 26 2014
A210694
T(n,k)=Number of (n+1)X(n+1) -k..k symmetric matrices with every 2X2 subblock having sum zero.
Original entry on oeis.org
5, 13, 9, 25, 35, 17, 41, 91, 97, 33, 61, 189, 337, 275, 65, 85, 341, 881, 1267, 793, 129, 113, 559, 1921, 4149, 4825, 2315, 257, 145, 855, 3697, 10901, 19721, 18571, 6817, 513, 181, 1241, 6497, 24583, 62281, 94509, 72097, 20195, 1025, 221, 1729, 10657, 49575
Offset: 1
R. H. Hardin, with R. J. Mathar in the Sequence Fans Mailing List, Mar 30 2012
Some solutions for n=3 k=4
.-2..1.-3..0....0.-1..0..1....4..0..1.-1....2.-1.-1.-2....3.-2..1..0
..1..0..2..1...-1..2.-1..0....0.-4..3.-3...-1..0..2..1...-2..1..0.-1
.-3..2.-4..1....0.-1..0..1....1..3.-2..2...-1..2.-4..1....1..0.-1..2
..0..1..1..2....1..0..1.-2...-1.-3..2.-2...-2..1..1..2....0.-1..2.-3
A213660
Irregular triangle read by rows: T(n,k) is the number of dominating subsets with k vertices of the graph G(n) obtained by taking n copies of the cycle graph C_3 with a vertex in common.
Original entry on oeis.org
3, 3, 1, 1, 8, 10, 5, 1, 1, 6, 23, 32, 21, 7, 1, 1, 8, 28, 72, 102, 80, 36, 9, 1, 1, 10, 45, 120, 242, 332, 290, 160, 55, 11, 1, 1, 12, 66, 220, 495, 856, 1116, 1032, 655, 280, 78, 13, 1, 1, 14, 91, 364, 1001, 2002, 3131, 3880, 3675, 2562, 1281, 448, 105, 15, 1
Offset: 1
Row 1 is 3,3,1 because the graph G(1) is the triangle abc; there are 3 dominating subsets of size 1 ({a}, {b}, {c}), 3 dominating subsets of size 2 ({a,b}, {a,c}, {b,c}), and 1 dominating subset of size 3 ({a,b,c}).
T(n,1)=1 for n >= 2 because the common vertex of the triangles is the only dominating subset of size k=1.
Triangle starts:
3, 3, 1;
1, 8, 10, 5, 1;
1, 6, 23, 32, 21, 7, 1;
1, 8, 28, 72, 102, 80, 36, 9, 1;
- S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
- T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926 [math.CO], 2012.
-
/* As triangle */ [[2^(2*n-k)*Binomial(n,k-n)+Binomial(2*n,k-1): k in [1..2*n+1]]: n in [1.. 10]]; // Vincenzo Librandi, Jul 20 2019
-
T := proc (n, k) options operator, arrow: 2^(2*n-k)*binomial(n, k-n)+binomial(2*n, k-1) end proc: for n to 9 do seq(T(n, k), k = 1 .. 2*n+1) end do; # yields sequence in triangular form
-
T[n_, k_] := 2^(2n-k) Binomial[n, k-n] + Binomial[2n, k-1];
Table[T[n, k], {n, 1, 9}, {k, 1, 2n+1}] // Flatten (* Jean-François Alcover, Dec 06 2017 *)
Showing 1-6 of 6 results.
Comments