cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A074605 a(n) = 3^n + 4^n.

Original entry on oeis.org

2, 7, 25, 91, 337, 1267, 4825, 18571, 72097, 281827, 1107625, 4371451, 17308657, 68703187, 273218425, 1088090731, 4338014017, 17309009347, 69106897225, 276040168411, 1102998412177, 4408506864307, 17623567104025
Offset: 0

Views

Author

Robert G. Wilson v, Aug 25 2002

Keywords

Comments

x^n + y^n = (x+y)*a(n-1) - (x*y)*a(n-2). - Vincenzo Librandi, Jul 19 2010

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 14.

Crossrefs

Programs

Formula

a(n) = A074506(n) - 1.
2 + 7*x + 25*x^2 + 91*x^3 + ... n terms = (1 - (4*x)^n)/(1 - 4*x) + (1 - (3*x)^n)/(1 - 3*x). [Jolley] - Gary W. Adamson, Dec 20 2006
From Mohammad K. Azarian, Jan 11 2009: (Start)
G.f.: 1/(1-3*x) + 1/(1-4*x).
E.g.f.: exp(3*x) + exp(4*x). (End)
a(n) = 3*a(n-1) + 4^(n-1). - Bruno Berselli, Jul 20 2010
a(n) = 7*a(n-1) - 12*a(n-2) with a(0)=2, a(1)=7. - Vincenzo Librandi, Jul 19 2010

A323767 A(n,k) = Sum_{j=0..floor(n/2)} binomial(n-j,j)^k, square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 5, 3, 1, 1, 2, 9, 11, 8, 4, 1, 1, 2, 17, 29, 26, 13, 4, 1, 1, 2, 33, 83, 92, 63, 21, 5, 1, 1, 2, 65, 245, 338, 343, 153, 34, 5, 1, 1, 2, 129, 731, 1268, 1923, 1281, 376, 55, 6
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2019

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,     1,      1,       1, ...
   1,  1,   1,    1,     1,      1,       1, ...
   2,  2,   2,    2,     2,      2,       2, ...
   2,  3,   5,    9,    17,     33,      65, ...
   3,  5,  11,   29,    83,    245,     731, ...
   3,  8,  26,   92,   338,   1268,    4826, ...
   4, 13,  63,  343,  1923,  10903,   62283, ...
   4, 21, 153, 1281, 11553, 108801, 1050753, ...
		

Crossrefs

Columns 0-5 give A004526(n+2), A000045(n+1), A051286, A181545, A181546, A181547.
Main diagonal gives A323769.
Cf. A011973,

Programs

  • Mathematica
    f := Sum[Power[Binomial[#1 - i, i], #2], {i, 0, #1/2}] &;a = Flatten[Reverse[DeleteCases[Table[Table[f[m - n, n], {n, 0, 20}], {m, 0, 20}], 0, Infinity], 2]] (* Elijah Beregovsky, Nov 24 2020 *)

A057351 Numbers k that divide 4^k + 3^k + 1.

Original entry on oeis.org

1, 2, 26, 338, 2054, 4394, 13282, 26702, 46306, 57122, 59566, 162266, 221446, 347126, 404293, 742586, 760318, 1301638, 2031406, 2109458, 2857114, 4512638, 4752982, 8340826, 8634886, 9653618, 10066654, 12819014, 19012162, 21263026, 25885054, 27422954, 34901542
Offset: 1

Views

Author

Robert G. Wilson v, Sep 22 2000

Keywords

Crossrefs

Cf. A074506.

Programs

  • Mathematica
    Select[ Range[ 10^6 ], Mod[ PowerMod[ 4, #, # ] + PowerMod[ 3, #, # ] + 1, # ] == 0 & ]

Extensions

a(18) from Hugo Pfoertner, Jan 05 2022
a(19)-a(33) from Michael S. Branicky, Jan 06 2022
Showing 1-3 of 3 results.