cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A245807 a(n) = 7^n + 10^n.

Original entry on oeis.org

2, 17, 149, 1343, 12401, 116807, 1117649, 10823543, 105764801, 1040353607, 10282475249, 101977326743, 1013841287201, 10096889010407, 100678223072849, 1004747561509943, 10033232930569601, 100232630513987207, 1001628413597910449, 10011398895185373143
Offset: 0

Views

Author

Vincenzo Librandi, Aug 04 2014

Keywords

Crossrefs

Cf. 7^n+k^n: A034491 (k=1), A074602 (k=2), A074608 (k=3), A074613 (k=4), A074616 (k=5), A074619 (k=6), A109808 (k=7), A074622 (k=8), A074623 (k=9), this sequence (k=10).

Programs

  • Magma
    [7^n+10^n: n in [0..25]];
    
  • Magma
    I:=[2,17]; [n le 2 select I[n] else 17*Self(n-1)-70*Self(n-2): n in [1..25]];
  • Mathematica
    Table[(7^n + 10^n), {n, 0, 30}] (* or *) CoefficientList[Series[(2 - 17 x)/((1 - 7 x) (1 - 10 x)), {x, 0, 40}], x]

Formula

G.f.: (2-17*x)/((1-7*x)*(1-10*x)).
E.g.f.: e^(7*x) + e^(10*x).
a(n) = 17*a(n-1)-70*a(n-2).
a(n) = A000420(n) + A011557(n).

A074520 1^n + 6^n + 7^n.

Original entry on oeis.org

3, 14, 86, 560, 3698, 24584, 164306, 1103480, 7444418, 50431304, 342941426, 2340123800, 16018069538, 109949704424, 756587236946, 5217746494520, 36054040477058, 249557173431944, 1729973554578866, 12008254925383640
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

Formula

G.f.:1/(1-x)+1/(1-6*x)+1/(1-7*x). E.g.f.: e^x+e^(6*x)+e^(7*x). [Mohammad K. Azarian, Dec 26 2008]
a(n) = 13*a(n-1) - 42*a(n-2) + 30, n>1. [Gary Detlefs, Jun 21 2010]
a(n) = A074619(n) + 1. - Michel Marcus, Nov 11 2013

A210694 T(n,k)=Number of (n+1)X(n+1) -k..k symmetric matrices with every 2X2 subblock having sum zero.

Original entry on oeis.org

5, 13, 9, 25, 35, 17, 41, 91, 97, 33, 61, 189, 337, 275, 65, 85, 341, 881, 1267, 793, 129, 113, 559, 1921, 4149, 4825, 2315, 257, 145, 855, 3697, 10901, 19721, 18571, 6817, 513, 181, 1241, 6497, 24583, 62281, 94509, 72097, 20195, 1025, 221, 1729, 10657, 49575
Offset: 1

Views

Author

R. H. Hardin, with R. J. Mathar in the Sequence Fans Mailing List, Mar 30 2012

Keywords

Comments

Table starts
...5....13.....25......41.......61.......85.......113.......145........181
...9....35.....91.....189......341......559.......855......1241.......1729
..17....97....337.....881.....1921.....3697......6497.....10657......16561
..33...275...1267....4149....10901....24583.....49575.....91817.....159049
..65...793...4825...19721....62281...164305....379793....793585....1531441
.129..2315..18571...94509...358061..1103479...2920695...6880121...14782969
.257..6817..72097..456161..2070241..7444417..22542017..59823937..143046721
.513.20195.281827.2215269.12030821.50431303.174571335.521638217.1387420489
Solutions are determined by the diagonal, extended with x(i,j) = (x(i,i)+x(j,j))/2 * (-1)^(i-j)

Examples

			Some solutions for n=3 k=4
.-2..1.-3..0....0.-1..0..1....4..0..1.-1....2.-1.-1.-2....3.-2..1..0
..1..0..2..1...-1..2.-1..0....0.-4..3.-3...-1..0..2..1...-2..1..0.-1
.-3..2.-4..1....0.-1..0..1....1..3.-2..2...-1..2.-4..1....1..0.-1..2
..0..1..1..2....1..0..1.-2...-1.-3..2.-2...-2..1..1..2....0.-1..2.-3
		

Crossrefs

Column 1 is A000051(n+1)
Column 2 is A007689(n+1)
Column 3 is A074605(n+1)
Column 4 is A074611(n+1)
Column 5 is A074615(n+1)
Column 6 is A074619(n+1)
Column 7 is A074622(n+1)
Column 8 is A074624(n+1)
Row 1 is A001844
Row 2 is A005898
Row 3 is A008514
Row 4 is A008515
Row 5 is A008516
Row 6 is A036085
Row 7 is A036086
Row 8 is A036087

Formula

T(n,k)=k^(n+1)+(k+1)^(n+1)

A221904 a(n) = 9^n + 10^n.

Original entry on oeis.org

2, 19, 181, 1729, 16561, 159049, 1531441, 14782969, 143046721, 1387420489, 13486784401, 131381059609, 1282429536481, 12541865828329, 122876792454961, 1205891132094649, 11853020188851841
Offset: 0

Views

Author

Vincenzo Librandi, Feb 06 2013

Keywords

Crossrefs

Programs

  • Magma
    [9^n + 10^n: n in [0..30]];
  • Mathematica
    CoefficientList[Series[1/(1-9*x) + 1/(1-10*x), {x, 0, 30}], x]
    LinearRecurrence[{19,-90},{2,19},30] (* Harvey P. Dale, Nov 10 2017 *)

Formula

G.f.: 1/(1 - 9*x) + 1/(1 - 10*x).
E.g.f.: exp(9*x) + exp(10*x).
a(n) = 19*a(n-1) - 90*a(n-2), a(1)=2, a(2)=19.

A045600 Numbers k that divide 7^k + 6^k.

Original entry on oeis.org

1, 13, 169, 2197, 28561, 371293, 2684903, 4826809, 34903739, 62748517, 257734633, 453748607, 815730721, 3185696137, 3350550229, 5898731891, 10604499373, 41414049781, 42655053961, 43557152977, 76683514583
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A074619.

A220788 Numbers k such that 7^k + 6^k is prime.

Original entry on oeis.org

0, 1, 4, 16
Offset: 1

Views

Author

Vincenzo Librandi, Jan 10 2013

Keywords

Comments

Next term is > 15000 if it exists.
Next term is > 100000 if it exists. - Michael S. Branicky, Oct 10 2024

Crossrefs

Programs

  • Magma
    /* The program does not work for n>2700: */ [n: n in [0..1000]| IsPrime(7^n + 6^n)];
    
  • Mathematica
    Join[{0, 1}, Select[2 Range[500], PrimeQ[7^# + 6^#] &]]
  • PARI
    for(n=0, 1000, if(isprime(7^n + 6^n), print1(n, ", ")))
Showing 1-6 of 6 results.