A074670 Differences between successive six-digit distinct-digit primes.
8, 30, 40, 60, 42, 8, 16, 24, 6, 50, 4, 6, 20, 6, 84, 6, 24, 66, 94, 14, 16, 306, 168, 72, 20, 18, 90, 30, 82, 98, 100, 272, 48, 10, 30, 42, 158, 10, 42, 14, 4, 26, 16, 20, 24, 10, 30, 6, 30, 30, 38, 42, 10, 74, 34
Offset: 1
Examples
a(1)=8 & a(2)=30 because first three 6-digit distinct-digit primes are 102359, 102367, 102397 and differences between them are 8 and 30.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..10238
Crossrefs
The first differences of A074669. For 3-digit distinct-digit primes, see A074675, A074676. For 4-digit distinct-digit primes, see A074673, A074674. For 5-digit distinct-digit primes, see A074671, A074672. For 7-digit distinct-digit primes, see A074667, A074668. For 8-digit distinct-digit primes, see A074665, A074666.
Programs
-
Mathematica
a=102345; b=a+8000; se6 = Select[Range[a, b, 2], Length[Union[IntegerDigits[ # ]]] == 6 && PrimeQ[ # ] & ]; Flatten[Table[{se6[[i+1]]-se6[[i]]}, {i, Length[se6]-1}]] Select[Prime[Range[9593,78498]],Length[Union[IntegerDigits[#]]] == 6&] // Differences (* Harvey P. Dale, Jun 06 2018 *)
Comments