cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A151796 Erroneous version of A074721.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 2, 93137414347535961677173798389971011031071091131, 271, 31, 13, 7, 13, 91491511, 571, 631, 67, 17, 3, 17, 9181, 19, 11, 9319, 7, 19
Offset: 1

Views

Author

Keywords

A033308 Decimal expansion of Copeland-Erdős constant: concatenate primes.

Original entry on oeis.org

2, 3, 5, 7, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 2, 9, 3, 1, 3, 7, 4, 1, 4, 3, 4, 7, 5, 3, 5, 9, 6, 1, 6, 7, 7, 1, 7, 3, 7, 9, 8, 3, 8, 9, 9, 7, 1, 0, 1, 1, 0, 3, 1, 0, 7, 1, 0, 9, 1, 1, 3, 1, 2, 7, 1, 3, 1, 1, 3, 7, 1, 3, 9, 1, 4, 9, 1, 5, 1, 1, 5, 7, 1, 6, 3, 1, 6, 7, 1, 7, 3, 1, 7, 9, 1, 8, 1, 1, 9, 1, 1
Offset: 0

Views

Author

Keywords

Comments

The number .23571113171923.... was proved normal in base 10 by Copeland and Erdős but is not known to be normal in other bases. - Jeffrey Shallit, Mar 14 2008
Could be read (with indices 1, 2, ...) as irregular table whose n-th row lists the A097944(n) digits of the n-th prime A000040(n). - M. F. Hasler, Oct 25 2019
Named after the American mathematician Arthur Herbert Copeland (1898-1970) and the Hungarian mathematician Paul Erdős (1913-1996). - Amiram Eldar, May 29 2021
This constant is irrational but it is not (yet) known to be transcendental. - Charles R Greathouse IV, Feb 03 2025

Examples

			0.235711131719232931374143475359616771737983899710110310710911312...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.9, p. 442.
  • Glyn Harman, One hundred years of normal numbers, in M. A. Bennett et al., eds., Number Theory for the Millennium, II (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 149-166.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.

Crossrefs

Cf. A030168 (continued fraction), A072754 (numerators of convergents), A072755 (denominators of convergents).
Cf. A000040 (primes), A097944 (row lengths if this is read as table), A228355 (digits of the primes listed in reversed order).
Cf. A033307 (Champernowne constant: analog for positive integers instead of primes), A007376 (digits of the integers, considered as infinite word or table), A066716 (decimals of the binary Champernowne constant).
Cf. A066747 and A191232: binary Copeland-Erdős constant: decimals and binary digits.
See also A338072.

Programs

  • Haskell
    a033308 n = a033308_list !! (n-1)
    a033308_list = concatMap (map (read . return) . show) a000040_list :: [Int]
    -- Reinhard Zumkeller, Mar 03 2014
  • Mathematica
    N[Sum[Prime[n]*10^-(n + Sum[Floor[Log[10, Prime[k]]], {k, 1, n}]), {n, 1, 40}], 100] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *)
    N[Sum[Prime@n*10^-(n + Sum[Floor[Log[10, Prime@k]], {k, n}]), {n, 45}], 106] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *)
    IntegerDigits //@ Prime@Range@45 // Flatten (* Robert G. Wilson v Oct 03 2006 *)
  • PARI
    default(realprecision, 2080); x=0.0; m=-1; forprime (p=2, 4000, n=1+floor(log(p)/log(10)); x=p+x*10^n; m+=n; ); x=x/10^m; for (n=0, 2000, d=floor(x); x=(x-d)*10; write("b033308.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009
    
  • PARI
    concat( apply( {row(n)=digits(prime(n))},  [1..99] )) \\ Yields this sequence; row(n) then yields the digits of prime(n) = n-th row of the table, cf. comments. - M. F. Hasler, Oct 25 2019
    

Formula

Equals Sum_{n>=1} prime(n)*10^(-A068670(n)). - Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006
Equals Sum_{i>=1} (p_i * 10^(-(Sum_{j=1..i} 1 + floor(log_10(p_j))) )) or Sum_{i>=1} (p_i * 10^(-( i + Sum_{j=1..i} floor(log_10(p_j))) )) or Sum_{i>=1} (p_i * 10^(-( Sum_{j=1..i} ceiling(log_10(1 + p_j))) )). - Daniel Forgues, Mar 26-28 2014

A069090 Primes none of whose proper initial segments are primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 41, 43, 47, 61, 67, 83, 89, 97, 101, 103, 107, 109, 127, 149, 151, 157, 163, 167, 181, 401, 409, 421, 443, 449, 457, 461, 463, 467, 487, 491, 499, 601, 607, 631, 641, 643, 647, 653, 659, 661, 683, 691, 809, 811, 821, 823, 827, 829
Offset: 1

Views

Author

Joseph L. Pe, Apr 05 2002

Keywords

Examples

			The proper initial segments of 499 are 4 and 49, none of which are primes. So 499 is a term of the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (inits)
    a069090 n = a069090_list !! (n-1)
    a069090_list = filter
       (all (== 0) . map (a010051 . read) . init . tail . inits . show)
       a000040_list
    -- Reinhard Zumkeller, Mar 11 2014
    
  • Maple
    isA069090 := proc(n)
        local dgs,l ;
        if isprime(n) then
            dgs := convert(n,base,10) ;
            ndgs := nops(dgs) ;
            for l from 1 to ndgs-1 do
                add( op(ndgs+i-l+1,dgs)*10^i,i=0..l-1) ;
                if isprime(%) then
                    return false;
                end if;
            end do:
            true ;
        else
            false ;
        end if;
    end proc:
    for n from 2 to 830 do
        if isA069090(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Dec 15 2016
  • Mathematica
    Select[Prime[Range[200]],NoneTrue[FromDigits/@Table[Take[ IntegerDigits[ #], n],{n,IntegerLength[#]-1}],PrimeQ]&] (* The program uses the NoneTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 24 2016 *)
  • PARI
    ina(n)=if(!isprime(n),return(0));while(n>9,n\=10;if(isprime(n),return(0)));1 \\ Franklin T. Adams-Watters, Jun 26 2009
    
  • Python
    from sympy import primerange, isprime
    def ok(p):
        s = str(p)
        if len(s) == 1: return True
        return all(not isprime(int(s[:i])) for i in range(1, len(s)))
    def aupto(lim):
        alst = []
        for p in primerange(1, lim+1):
            if ok(p): alst.append(p)
        return alst
    print(aupto(829)) # Michael S. Branicky, Jul 03 2021

Extensions

More terms from Franklin T. Adams-Watters, Jun 26 2009

A354839 Beginning with 0, smallest positive integer not yet in the sequence such that the concatenation of two digits of the sequence separated by a comma is prime.

Original entry on oeis.org

0, 2, 3, 1, 7, 9, 70, 5, 30, 20, 21, 10, 22, 31, 11, 12, 32, 33, 13, 14, 15, 34, 16, 17, 18, 35, 36, 19, 71, 37, 38, 39, 72, 90, 23, 73, 74, 75, 91, 76, 77, 92, 93, 78, 94, 79, 700, 24, 100, 25, 95, 96, 101, 97, 98, 99, 701, 102, 300, 26, 103, 104, 105, 301
Offset: 0

Views

Author

Carole Dubois, Jun 08 2022

Keywords

Examples

			a(4)=1 because this is the first number not in the sequence whose first digit is 3 (last digit of a(3)), concatenated with its first digit 1, is prime: 31.
a(14)=31 because this is the first number not in the sequence whose first digit is 2 (last digit of a(13)), concatenated with its first digit 3, is prime: 23.
		

Crossrefs

Programs

  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        aset, k, mink = {0}, 0, 1; yield 0
        for n in count(2):
            k, prevdig = mink, str(k%10)
            while k in aset or not isprime(int(prevdig+str(k)[0])): k += 1
            aset.add(k); yield k
            while mink in aset: mink += 1
    print(list(islice(agen(), 64))) # Michael S. Branicky, Jun 09 2022
Showing 1-4 of 4 results.