cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A074762 Fifth root of n contains n as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

633, 634, 635, 636, 637, 638, 639, 877, 878, 879, 880, 881, 882, 883, 884, 1185, 5061, 33459, 438240, 682290, 17263489, 188423892, 991790057, 7231603790, 75314706735, 62651040995719, 296757769625554, 4295141978111813, 14929328605861651, 516659008545595106
Offset: 1

Views

Author

Paul Lusch, Sep 06 2002

Keywords

Examples

			Fifth root of 33459 = 8.033459...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{l = Floor[ Log[10, n] + 1], rd = RealDigits[n^(1/5), 10, 24], id = IntegerDigits[n]}, rdd = Drop[ rd[[1]], rd[[2]]]; While[ rdd[[1]] == 0, rdd = Drop[ rdd, 1]]; Take[ rdd, l] == id]; Do[ If[ StringPosition[ ToString[ N[ n^(1/5), 24]], ToString[ n]] != {}, If[ f[n], Print[ n]]], {n, 2, 170000000}] (* Robert G. Wilson v, Jul 30 2004 *)
  • PARI
    /* Uses PARI functions provided in link
    * Note: does not predict 639 due to simplification error and
    * 877-884 due to checking only first solutions to the Grafting Equation.
    * Sample run uses a = [0,16], b=10, p=5, direct=True */
    GetAllGIs(0,16,10,5,1) \\ Robert Tanniru, Nov 20 2013

Extensions

Edited and extended by Robert G. Wilson v, Jul 31 2004
a(22)-a(25) by Robert Tanniru, Nov 20 2013
More terms from Jon E. Schoenfield, Aug 17 2014

A232086 Third root of n contains n as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

2, 39, 48570, 70293094, 97959170, 383263523, 7141269931, 52167799575, 54592884236, 80834974860, 3224757993012, 8391216236921, 174753523862043, 2248771925089484, 355191775894066192, 758148263300700696, 3004862096444523247, 9336508574693449683, 71580261944407825851
Offset: 1

Views

Author

Robert Tanniru, Nov 17 2013

Keywords

Examples

			97959170^(1/3) = 460.97959170151...
		

Crossrefs

Programs

  • PARI
    /* PARI functions provided in extra link. */
    /* Sample Run Using a = [0,12], b=10, p=3 */
    GetAllGIs(0,12,10,3,1)

Extensions

a(11)-a(12) added by Robert Tanniru, Nov 20 2013
More terms from Bert Dobbelaere, Jun 23 2024

A232110 Fourth root of n contains n as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

3, 4, 27, 1913227, 9821998, 3588613885932, 7625632704605, 50859949338383, 21029300554772499, 97202454420912990, 440023525444970228, 783944985766933369, 1277151495727998611, 2283977463662240937, 72927208535053310211, 365439872472838714161, 740751647624914930138
Offset: 1

Views

Author

Robert Tanniru, Nov 18 2013

Keywords

Examples

			1913227^(1/4) = 37.19132279207...
		

Crossrefs

Programs

  • PARI
    isok(n) = {if (ispower(n, 4), return (0)); fr = frac(n^(1/4)); while (frac(fr) < 1/10, fr *= 10); nd = length(digits(n)); fr *= 10^nd; floor(fr) == n;} \\ Michel Marcus, Nov 20 2013
    
  • PARI
    /*Sample Run Using a = [0,14], b=10, p=4 using PARI code in link */
    GetAllGIs(0,14,10,4,1)

Extensions

More terms from Bert Dobbelaere, Jun 23 2024

A232087 Second-order base-10 grafting integers.

Original entry on oeis.org

0, 1, 8, 77, 98, 99, 100, 764, 765, 5711, 5736, 9797, 9998, 9999, 10000, 76394, 77327, 997997, 999998, 999999, 1000000, 2798254, 7639321, 8053139, 25225733, 42808341, 57359313, 60755907, 62996069, 99979997, 99999998, 99999999, 100000000, 127016654
Offset: 1

Views

Author

Robert Tanniru, Nov 17 2013

Keywords

Comments

Second-order base-10 grafting integers are integers that, when expressed in base 10, will appear in their own square root before or directly after the decimal point (ignoring leading 0's and including trailing 0's).
All numbers of the form 10^2n, 10^2n - 1, and 10^2n - 2, n >= 1, are terms.
All numbers of the form (10^n-3)*(10^n+1), n > 0, are terms.

Examples

			sqrt(764) = 27.64054992...
sqrt(77327) = 278.0773273749...
sqrt(1000000) = 1000.000...
		

References

  • Robert Tanniru, A short note introducing Grafting Numbers and their connection to Catalan Numbers, J. Comb. Math. and Comb. Computing, 95 (2015), 309-312.

Crossrefs

Cf. A074841 (subsequence).

Programs

  • PARI
    /* Uses PARI functions provided in link
    * Sample run uses a = [0,11], b=10, p=2, direct=FALSE */
    GetAllGIs(0,11,10,2,0)

A074119 Seventh root of n contains n as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

89, 90, 16874, 25077, 479505, 306577056, 3821075079, 18014062431, 23075041700, 7240367851167, 85944742335578, 359069276640550, 809162747122740, 41275883437937369, 3209114244021563000, 69831531751710887320, 236842309259501676015, 12355587970480207660102, 79903263070494746587634
Offset: 1

Views

Author

Paul Lusch, Sep 16 2002

Keywords

Examples

			Seventh root of 16874 = 4.016874...
		

Crossrefs

Extensions

More terms from Bert Dobbelaere, Jun 23 2024

A105429 Numbers k such that square root of k contains the reverse of k as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

8, 77, 98, 1439, 179848, 2723643, 3522548, 6428805, 805039212, 37574751287, 536098097002, 927422715988
Offset: 1

Views

Author

Gil Broussard, Apr 08 2005

Keywords

Comments

a(11) > 2*10^11. If terms ending in 0 were allowed, then 3970 and 5490 would be terms, since sqrt(3970) = 63.00793... and sqrt(5490) = 74.0945... . - Giovanni Resta, Aug 08 2019
a(13) > 10^12. - Mauro Simonato, Sep 25 2021

Examples

			a(5)=179848 because the square root of 179848 (whose reverse is 848971) = 424.08489716...
		

Crossrefs

Cf. A074841.

Extensions

a(9)-a(10) from Giovanni Resta, Aug 08 2019
a(11)-a(12) from Mauro Simonato, Sep 25 2021

A272208 Numbers n such that n immediately follows the decimal point in the base-10 representation of sqrt(n).

Original entry on oeis.org

8, 77, 5711, 9797, 997997, 8053139, 60755907, 99979997, 9999799997, 71515443427, 93445113269, 999997999997, 26369408771424, 96872443448748, 99650905131203, 99999979999997, 751273714618266, 3368237924952647, 3493498117381256, 9999999799999997, 35399255736521405, 999999997999999997
Offset: 1

Views

Author

David W. Wilson, May 15 2016

Keywords

Comments

Sequence includes all numbers of form (10^n-3)(10^n+1) for n >= 1, hence is infinite.

Examples

			5711 immediately follows the decimal in sqrt(5711) = 75.5711+, so 5711 is in the sequence.
77327 does not immediately follow the decimal in sqrt(77327) = 278.077327+, so 77327 is not in this sequence.
		

Crossrefs

Strict subsequence of A074841.

Programs

A096257 The least k whose n-th root contains k as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

8, 2, 3, 633, 19703, 89, 69, 56, 46, 39, 33, 29, 25, 22, 20, 18, 16, 14, 13, 12, 11, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 138, 133, 128, 124, 120, 116, 113, 109, 106, 103, 100, 97, 95, 92, 90, 87, 85, 83, 81, 79, 77, 75, 74, 72, 70, 69, 67, 66, 65, 63, 62, 61, 59, 58, 57
Offset: 2

Views

Author

Paul Lusch and Robert G. Wilson v, Jul 31 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[k_, n_] := Block[{l = Floor[ Log[10, k] + 1], rd = RealDigits[ k^(1/n), 10, 24], id = IntegerDigits[k]}, rdd = Drop[ rd[[1]], rd[[2]]]; While[ rdd[[1]] == 0, rdd = Drop[rdd, 1]]; Take[rdd, l] == id]; g[n_] := Block[{k = 2}, While[IntegerQ[k^(1/n)] || f[k, n] == False, k++ ]; k]; Table[ g[n], {n, 2, 72}]
  • Python
    import re
    from sympy import perfect_power
    from decimal import *
    getcontext().prec = 24
    def lzs(s): return len(s) - 2 - len(s[2:].lstrip('0')) # # of leading zeros
    def cond(sk, sroot, k, n): # is condition true, with precision verification
        if perfect_power(k, [n]): return False # decimal part should be all 0's
        assert lzs(sroot) + len(sk) < len(sroot) - 3, (n, "increase precision")
        return re.match("0.0*"+sk, sroot)
    def a(n):
        k, power = 1, Decimal(1)/Decimal(n)
        rootk, sk = Decimal(k)**power, str(k)
        while not cond(sk, str(rootk - int(rootk)), k, n):
            k += 1
            rootk, sk = Decimal(k)**power, str(k)
        return k
    print([a(n) for n in range(2, 73)]) # Michael S. Branicky, Aug 02 2021

A099400 Square root of a(n) contains the n-th prime as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

5, 11, 21, 3, 83, 124, 201, 27, 5, 28, 11, 179, 2, 89, 20, 91, 92, 58, 114, 50, 3, 23, 34, 24, 288, 2411, 581, 1377, 1031, 489, 1531, 366, 849, 632, 406, 536, 367, 2721, 13495, 537, 634, 492, 686, 331, 1866, 408, 52, 409, 485, 688, 297, 742, 1105, 12377, 856, 1174
Offset: 1

Views

Author

Gil Broussard, Nov 17 2004

Keywords

Examples

			a(1)= 5 because sqrt( 5)=2.(2)236...
a(2)=11 because sqrt(11)=3.(3)316...
a(3)=21 because sqrt(21)=4.(5)825...
a(4)= 3 because sqrt( 3)=1.(7)320...
...
a(100) =1125 because sqrt(1125)=33.5410... and 541 is the 100th prime.
		

Crossrefs

A099401 Square root of a(n) contains the n-th Fibonacci number as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

10, 10, 5, 11, 21, 8, 124, 52, 54, 43, 24, 970, 297, 457, 467, 1520, 2516, 7269, 12414, 3804, 11048, 25020, 135635, 56389, 710228, 44151, 21082, 762684, 696414, 1085414, 6472621, 2979828, 15220551, 72130, 9934617, 79533387
Offset: 1

Views

Author

Gil Broussard, Nov 17 2004

Keywords

Examples

			a(1)= 10 because sqrt( 10)= 3.(1)622...
a(2)= 10 because sqrt( 10)= 3.(1)622...
a(3)= 5 because sqrt( 5)= 2.(2)360...
a(4)= 11 because sqrt( 11)= 3.(3)166...
a(5)= 21 because sqrt( 21)= 4.(5)825...
a(6)= 8 because sqrt( 8)= 2.(8)284...
a(7)= 124 because sqrt(124)=11.(13)55...
etc.
		

Crossrefs

Programs

  • Mathematica
    Do[x = IntegerDigits[Fibonacci[n]]; i = 1; l = {}; While[l != x, d = RealDigits[N[Sqrt[i], 100]]; l = Take[Drop[First[d], Last[d]], Length[x]]; i++ ]; Print[i-1], {n, 1, 36}] (* Ryan Propper, Aug 11 2005 *)

Extensions

Corrected and extended by Ryan Propper, Aug 11 2005
Showing 1-10 of 11 results. Next