cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Paul Lusch

Paul Lusch's wiki page.

Paul Lusch has authored 11 sequences. Here are the ten most recent ones:

A292125 Positive numbers n such that the set of base-7 digits of n equals both the set of base-8 digits of n and the set of base-9 digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 32942, 103302, 142489, 178248, 263180, 361369, 362370, 378454, 540929, 540940, 567333, 567337, 590697, 693302, 723659, 726195, 743217, 829792, 888934, 1070221, 1073830, 1074177, 1083411, 1083738, 1090352, 1106956, 1129738, 1139557, 1139881, 1201762, 1249562
Offset: 1

Author

Paul Lusch, Sep 08 2017

Keywords

Examples

			32942 in base 7 is 165020; in base 8 is 100256; and in base 9 is 50162. The set of digits for all three is {0, 1, 2, 5, 6}.
		

Crossrefs

Subsequence of A037438.

Programs

  • Maple
    filter:= proc(n) local S;
      S:= convert(convert(n,base,9),set);
      nops(S intersect {7,8})=0 and evalb(convert(convert(n,base,8),set)=S) and evalb(convert(convert(n,base,7),set)=S)
    end proc:
    select(filter, [$1..6,seq(seq(9*a+b,b=0..6),a=1..7*9^5-1)]); # Robert Israel, Sep 11 2017
  • Mathematica
    Select[Range[5/4*10^6], Function[k, SameQ @@ Map[Union@ IntegerDigits[k, #] &, {7, 8, 9}]]] (* Michael De Vlieger, Sep 10 2017 *)
  • PARI
    isok(n) = my(s7 = Set(digits(n, 7)), s8 = Set(digits(n, 8)), s9 = Set(digits(n, 9))); (s7 == s8) && (s8 == s9); \\ Michel Marcus, Sep 09 2017

Extensions

More terms from Michel Marcus, Sep 09 2017

A130604 Numbers whose base-10 and base-7 representations are permutations of the same multiset of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 23, 46, 265, 316, 1030, 1234, 1366, 1431, 1454, 2060, 2116, 10144, 10342, 10542, 11425, 12415, 12450, 12564, 12651, 13045, 13245, 13534, 14610, 15226, 15643, 16255, 16546, 16633, 101046, 101264, 102615, 103260, 103316, 103460, 103461, 103462, 103463, 103464, 103465, 103466, 104126, 104632, 104650, 104651, 104652, 104653, 104654, 104655, 104656, 105266, 106235, 106253, 113256, 116336
Offset: 1

Author

Paul Lusch, Aug 10 2007

Keywords

Comments

The sequence is finite and full since any d-digit number is < 7^d in base 7 and > 10^(d-1) in base 10. But 1000000 = 10^6 > 7^7 = 823543, so any term must have 6 or fewer digits and all those are present. - Michael S. Branicky, Apr 22 2023

Examples

			14610 is represented as 14610 in base 10 and as 60411 in base 7. Each representation is a permutation of the multiset {0,1,1,4,6}.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10,110000],Sort[IntegerDigits[#]]==Sort[IntegerDigits[#,7]]&] (* Harvey P. Dale, Sep 23 2017 *)
  • Python
    from sympy.ntheory import digits
    def ok(n): return sorted(map(int, str(n))) == sorted(digits(n, 7)[1:])
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Apr 22 2023

Extensions

a(1)-a(7) inserted and a(43)-a(61) from Michael S. Branicky, Apr 22 2023

A096257 The least k whose n-th root contains k as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

8, 2, 3, 633, 19703, 89, 69, 56, 46, 39, 33, 29, 25, 22, 20, 18, 16, 14, 13, 12, 11, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 138, 133, 128, 124, 120, 116, 113, 109, 106, 103, 100, 97, 95, 92, 90, 87, 85, 83, 81, 79, 77, 75, 74, 72, 70, 69, 67, 66, 65, 63, 62, 61, 59, 58, 57
Offset: 2

Author

Paul Lusch and Robert G. Wilson v, Jul 31 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[k_, n_] := Block[{l = Floor[ Log[10, k] + 1], rd = RealDigits[ k^(1/n), 10, 24], id = IntegerDigits[k]}, rdd = Drop[ rd[[1]], rd[[2]]]; While[ rdd[[1]] == 0, rdd = Drop[rdd, 1]]; Take[rdd, l] == id]; g[n_] := Block[{k = 2}, While[IntegerQ[k^(1/n)] || f[k, n] == False, k++ ]; k]; Table[ g[n], {n, 2, 72}]
  • Python
    import re
    from sympy import perfect_power
    from decimal import *
    getcontext().prec = 24
    def lzs(s): return len(s) - 2 - len(s[2:].lstrip('0')) # # of leading zeros
    def cond(sk, sroot, k, n): # is condition true, with precision verification
        if perfect_power(k, [n]): return False # decimal part should be all 0's
        assert lzs(sroot) + len(sk) < len(sroot) - 3, (n, "increase precision")
        return re.match("0.0*"+sk, sroot)
    def a(n):
        k, power = 1, Decimal(1)/Decimal(n)
        rootk, sk = Decimal(k)**power, str(k)
        while not cond(sk, str(rootk - int(rootk)), k, n):
            k += 1
            rootk, sk = Decimal(k)**power, str(k)
        return k
    print([a(n) for n in range(2, 73)]) # Michael S. Branicky, Aug 02 2021

A087672 n = k^2 - (reversal of k)^2 for two different values of k.

Original entry on oeis.org

891, 1485, 1584, 2376, 3168, 4455, 4752, 89991, 95931, 101871, 107811, 149985, 155925, 159984, 161865, 167805, 167904, 175824, 183744, 191664, 239976, 247896, 255816, 263736, 271656, 319968, 327888, 335808, 343728, 351648, 449955, 479655
Offset: 0

Author

Paul Lusch, Sep 26 2003

Keywords

Comments

Each n is a multiple of 99. The first few pairs for k: (30,54) (41,87) (40,53) (51,75) (62,97) (72,96) (71,84) (300,504) (310,534) (320,564) (330,594) (401,807) (411,837) (400,503) (421,867) (431,897) (410,523) (420,543) (430,563) (440,583).

Examples

			2376 = 51^2 - 15^2 = 75^2 - 57^2; 161865 = 421^2 - 124^2 = 867^2 - 768^2
		

A075761 Numbers n such that there are at least 3 integers k from the set {2,3,4,5,6,7,8,9} such that the digital sum of each base k representation of n equals k.

Original entry on oeis.org

13, 17, 19, 21, 25, 29, 31, 33, 37, 41, 57, 61, 65, 73, 85, 91, 121, 129, 133, 145, 169, 225, 253, 257, 261, 265, 281, 301, 325, 337, 361, 385, 505, 513, 757, 785, 841, 1057, 1081, 1093, 1381, 1625, 2080, 2241, 3241, 4117, 4377, 4401, 5125, 8281, 16416
Offset: 1

Author

Paul Lusch, Oct 08 2002

Keywords

Comments

13, 33, 37 and 57 work for 4 bases. 85 is the only integer found that works for 5 bases: 3, 4, 5, 7 and 8.

Examples

			91 in base 3 = 10101 and 1 + 0 + 1 + 0 + 1 = 3, which is the base. 91 in base 6 = 231 and 2 + 3 + 1 = 6, which is the base. 91 in base 7 = 160 and 1 + 6 + 0 = 7, which is the base.
		

A074762 Fifth root of n contains n as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

633, 634, 635, 636, 637, 638, 639, 877, 878, 879, 880, 881, 882, 883, 884, 1185, 5061, 33459, 438240, 682290, 17263489, 188423892, 991790057, 7231603790, 75314706735, 62651040995719, 296757769625554, 4295141978111813, 14929328605861651, 516659008545595106
Offset: 1

Author

Paul Lusch, Sep 06 2002

Keywords

Examples

			Fifth root of 33459 = 8.033459...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{l = Floor[ Log[10, n] + 1], rd = RealDigits[n^(1/5), 10, 24], id = IntegerDigits[n]}, rdd = Drop[ rd[[1]], rd[[2]]]; While[ rdd[[1]] == 0, rdd = Drop[ rdd, 1]]; Take[ rdd, l] == id]; Do[ If[ StringPosition[ ToString[ N[ n^(1/5), 24]], ToString[ n]] != {}, If[ f[n], Print[ n]]], {n, 2, 170000000}] (* Robert G. Wilson v, Jul 30 2004 *)
  • PARI
    /* Uses PARI functions provided in link
    * Note: does not predict 639 due to simplification error and
    * 877-884 due to checking only first solutions to the Grafting Equation.
    * Sample run uses a = [0,16], b=10, p=5, direct=True */
    GetAllGIs(0,16,10,5,1) \\ Robert Tanniru, Nov 20 2013

Extensions

Edited and extended by Robert G. Wilson v, Jul 31 2004
a(22)-a(25) by Robert Tanniru, Nov 20 2013
More terms from Jon E. Schoenfield, Aug 17 2014

A074841 Square root of n contains n as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

8, 77, 5711, 9797, 77327, 997997, 8053139, 60755907, 62996069, 99979997, 9999799997, 71515443427, 76933604839, 93445113269, 999997999997
Offset: 1

Author

Paul Lusch, Sep 09 2002

Keywords

Comments

All numbers of the form (10^n-3)*(10^n+1), n > 0, are members. - Robert G. Wilson v, Aug 02 2004

Examples

			The square root of 77327 = 278.077327...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{l = Floor[ Log[10, n] + 1], rd = RealDigits[ Sqrt[n], 10, 24], id = IntegerDigits[n]}, rdd = Drop[ rd[[1]], rd[[2]]]; While[ rdd[[1]] == 0, rdd = Drop[rdd, 1]]; Take[rdd, l] == id]; Do[ If[ StringPosition[ ToString[ N[ Sqrt[n], 24]], ToString[n]] != {}, If[ f[n], Print[n]]], {n, 2, 6 10^8}] (* Robert G. Wilson v, Aug 02 2004 *)
  • PARI
    /* Uses PARI functions provided in link
    * Sample run uses a = [0,12], b=10, p=2, direct=True */
    GetAllGIs(0,12,10,2,1) \\ Robert Tanniru, Nov 20 2013

Extensions

More terms from Robert G. Wilson v, Aug 02 2004
New term a(13) inserted by Robert Tanniru, Nov 20 2013

A073585 Square root of n has the same nonzero digit in each of the first 4 places to the right of the decimal point.

Original entry on oeis.org

5168, 6543, 8080, 9779, 11640, 13663, 15848, 18195, 20704, 23375, 26208, 29203, 32360, 35679, 39160, 42803, 46608, 50575, 51731, 54704, 55906, 58995, 60243, 63448, 64742, 68063, 69403, 72840, 74226, 77779, 79211, 81542, 82880, 84358, 86763, 88143, 89667
Offset: 1

Author

Paul Lusch, Aug 28 2002

Keywords

Comments

For each term given, the repeated digit is either 8 or 4.

Examples

			The square root of 5168 is 71.88880302...
		

Programs

  • Mathematica
    re[n_] := Union[First[RealDigits[Sqrt[n], 10, 4, -1]]]; t = {}; Do[If[Length[x = re[n]] == 1 && x != {0}, AppendTo[t, n]], {n, 90000}]; t (* Jayanta Basu, Jul 02 2013 *)
    snd4Q[n_]:=Module[{rd=RealDigits[Sqrt[n],10,20],d4},d4=Take[ Drop[ rd[[1]], rd[[2]]], 4];d4[[1]]!=0&&Union[Differences[d4]]=={0}]; Select[ Range[100000],snd4Q] (* Harvey P. Dale, Jul 22 2016 *)
  • PARI
    isA073585(n)=if(issquare(n),0,my(x=sqrt(n));x-=floor(x);x=floor(10000*x);x%1111==0)

A074233 Numbers whose base-4 and base-5 representations are permutations of the same multiset of digits.

Original entry on oeis.org

0, 1, 2, 3, 28, 137, 210, 692, 717, 933, 3138, 3213, 3416, 3467, 3538, 16068
Offset: 1

Author

Paul Lusch, Sep 18 2002

Keywords

Comments

This sequence is finite and full. Proof: the smallest base-5 number with m digits is 5^(m-1). The largest base-4 number with m digits is 4^m - 1. For m >= 8, 5^(m-1) > 4^m - 1. So any term is <= 4^8 which has been checked. - David A. Corneth, Jan 24 2022

Examples

			692 is represented as 22310 in base 4 and as 10232 in base 5. Each representation is a permutation of the multiset {0,1,2,2,3}.
		

Crossrefs

Programs

  • PARI
    isok(m) = vecsort(digits(m, 4)) == vecsort(digits(m, 5)); \\ Michel Marcus, Jan 24 2022

Extensions

First four terms inserted by David A. Corneth, Jan 24 2022

A074119 Seventh root of n contains n as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

89, 90, 16874, 25077, 479505, 306577056, 3821075079, 18014062431, 23075041700, 7240367851167, 85944742335578, 359069276640550, 809162747122740, 41275883437937369, 3209114244021563000, 69831531751710887320, 236842309259501676015, 12355587970480207660102, 79903263070494746587634
Offset: 1

Author

Paul Lusch, Sep 16 2002

Keywords

Examples

			Seventh root of 16874 = 4.016874...
		

Crossrefs

Extensions

More terms from Bert Dobbelaere, Jun 23 2024