A074909 Running sum of Pascal's triangle (A007318), or beheaded Pascal's triangle read by beheaded rows.
1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 35, 21, 7, 1, 8, 28, 56, 70, 56, 28, 8, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11
Offset: 0
Examples
T(4,2) = 0+0+1+3+6 = 10 = binomial(5, 2). Triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 0: 1 1: 1 2 2: 1 3 3 3: 1 4 6 4 4: 1 5 10 10 5 5: 1 6 15 20 15 6 6: 1 7 21 35 35 21 7 7: 1 8 28 56 70 56 28 8 8: 1 9 36 84 126 126 84 36 9 9: 1 10 45 120 210 252 210 120 45 10 10: 1 11 55 165 330 462 462 330 165 55 11 11: 1 12 66 220 495 792 924 792 495 220 66 12 ... Reformatted. - _Wolfdieter Lang_, Nov 04 2014 . Can be seen as the square array A(n, k) = binomial(n + k + 1, n) read by descending antidiagonals. A(n, k) is the number of monotone nondecreasing functions f: {1,2,..,k} -> {1,2,..,n}. - _Peter Luschny_, Aug 25 2019 [0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 [1] 2, 3, 4, 5, 6, 7, 8, 9, 10, ... A000027 [2] 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217 [3] 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292 [4] 5, 15, 35, 70, 126, 210, 330, 495, 715, ... A000332 [5] 6, 21, 56, 126, 252, 462, 792, 1287, 2002, ... A000389 [6] 7, 28, 84, 210, 462, 924, 1716, 3003, 5005, ... A000579 [7] 8, 36, 120, 330, 792, 1716, 3432, 6435, 11440, ... A000580 [8] 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, ... A000581 [9] 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, ... A000582
Links
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Tom Copeland, Appell polynomials, cumulants, noncrossing partitions, Dyck lattice paths, and inversion, 2014.
- Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015.
- Sela Fried, The expected degree of noninvertibility of compositions of functions and a related combinatorial identity, arXiv:2202.13061 [math.CO], 2022.
- J. R. Griggs, The Cycling of Partitions and Compositions under Repeated Shifts, Advances in Applied Mathematics, Volume 21, Issue 2, August 1998, Pages 205-227.
- P. Olver, The canonical contact form p. 7.
- D. P. Walsh, A short note on increasing acyclic functions
Crossrefs
Programs
-
GAP
Flat(List([0..10],n->List([0..n],k->Binomial(n+1,k)))); # Muniru A Asiru, Jul 10 2018
-
Haskell
a074909 n k = a074909_tabl !! n !! k a074909_row n = a074909_tabl !! n a074909_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [1])) [1] -- Reinhard Zumkeller, Feb 25 2012
-
Magma
/* As triangle */ [[Binomial(n+1,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 22 2018
-
Maple
A074909 := proc(n,k) if k > n or k < 0 then 0; else binomial(n+1,k) ; end if; end proc: # Zerinvary Lajos, Nov 09 2006
-
Mathematica
Flatten[Join[{1}, Table[Sum[Binomial[k, m], {k, 0, n}], {n, 0, 12}, {m, 0, n}] ]] (* or *) Flatten[Join[{1}, Table[Binomial[n, m], {n, 12}, {m, n}]]]
-
PARI
print1(1);for(n=1,10,for(k=1,n,print1(", "binomial(n,k)))) \\ Charles R Greathouse IV, Mar 26 2013
-
Python
from math import comb, isqrt def A074909(n): return comb(r:=(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)),n-comb(r,2)) # Chai Wah Wu, Nov 12 2024
Formula
T(n, k) = Sum_{i=0..n} C(i, n-k) = C(n+1, k).
Row n has g.f. (1+x)^(n+1)-x^(n+1).
E.g.f.: ((1+x)*e^t - x) e^(x*t). The row polynomials p_n(x) satisfy dp_n(x)/dx = (n+1)*p_(n-1)(x). - Tom Copeland, Jul 10 2018
T(n, k) = T(n-1, k-1) + T(n-1, k) for k: 0Reinhard Zumkeller, Apr 18 2005
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(0,0)=1, T(1,0)=1, T(1,1)=2, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 27 2013
G.f. for column k (with leading zeros): x^(k-1)*(1/(1-x)^(k+1)-1), k >= 0. - Wolfdieter Lang, Nov 04 2014
Up(n, x+y) = (Up(.,x)+ y)^n = Sum_{k=0..n} binomial(n,k) Up(k,x)*y^(n-k), where Up(n,x) = ((x+1)^(n+1)-x^(n+1)) / (n+1) = P(n,x)/(n+1) with P(n,x) the n-th row polynomial of this entry. dUp(n,x)/dx = n * Up(n-1,x) and dP(n,x)/dx = (n+1)*P(n-1,x). - Tom Copeland, Nov 14 2014
The o.g.f. GF(x,t) = x / ((1-t*x)*(1-(1+t)x)) = x + (1+2t)*x^2 + (1+3t+3t^2)*x^3 + ... has the inverse GFinv(x,t) = (1+(1+2t)x-sqrt(1+(1+2t)*2x+x^2))/(2t(1+t)x) in x about 0, which generates the row polynomials (mod row signs) of A033282. The reciprocal of the o.g.f., i.e., x/GF(x,t), gives the free cumulants (1, -(1+2t) , t(1+t) , 0, 0, ...) associated with the moments defined by GFinv, and, in fact, these free cumulants generate these moments through the noncrossing partitions of A134264. The associated e.g.f. and relations to Grassmannians are described in A248727, whose polynomials are the basis for an Appell sequence of polynomials that are umbral compositional inverses of the Appell sequence formed from this entry's polynomials (distinct from the one described in the comments above, without the normalizing reciprocal). - Tom Copeland, Jan 07 2015
T(n, k) = (1/k!) * Sum_{i=0..k} Stirling1(k,i)*(n+1)^i, for 0<=k<=n. - Ridouane Oudra, Oct 23 2022
Extensions
I added an initial 1 at the suggestion of Paul Barry, which makes the triangle a little nicer but may mean that some of the formulas will now need adjusting. - N. J. A. Sloane, Feb 11 2003
Formula section edited, checked and corrected by Wolfdieter Lang, Nov 04 2014
Comments