A074987 a(n) is the least m not equal to n such that phi(m) = phi(n).
2, 1, 4, 3, 8, 3, 9, 5, 7, 5, 22, 5, 21, 7, 16, 15, 32, 7, 27, 15, 13, 11, 46, 15, 33, 13, 19, 13, 58, 15, 62, 17, 25, 17, 39, 13, 57, 19, 35, 17, 55, 13, 49, 25, 35, 23, 94, 17, 43, 25, 64, 35, 106, 19, 41, 35, 37, 29, 118, 17, 77, 31, 37, 51, 104, 25, 134, 51, 92, 35, 142
Offset: 1
Examples
phi(5) = 4 and 8 is the least natural number k different from 5 such phi(k) = 4. Hence phi(5) = 8.
References
- J. Tattersall, "Elementary Number Theory in Nine Chapters", Cambridge University Press, 2001, pp. 162-163.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- K. Ford, The distribution of totients, arXiv:1104.3264 [math.NT], 2011.
- A. Schlafly and S. Wagon, Carmichael's conjecture on the Euler function is valid below 10^{10,000,000}, Mathematics of Computation, 63 No. 207(1994), 415-419.
- Wikipedia, Carmichael's_totient_function_conjecture
Programs
-
Maple
N:= 1000: # to get a(n) for n <= N todo:= N; for n from 1 while todo > 0 do v:= numtheory:-phi(n); if assigned(R[v]) then if n <= N then A[n]:= R[v]; todo:= todo-1; fi; if R[v] <= N and not assigned(A[R[v]]) then A[R[v]]:= n; todo:= todo-1; fi; else R[v]:= n fi od: seq(A[n],n=1..N); # Robert Israel, Aug 12 2016
-
Mathematica
l = {}; Do[ e = EulerPhi[n]; i = 1; While[e != EulerPhi[i] || n == i, i++ ]; l = Append[l, i], {n, 1, 100}]; l (* Second program: *) Module[{nn=300,lst},lst=Table[{n,EulerPhi[n]},{n,nn}];Take[Table[ SelectFirst[ lst,#[[2]] == lst[[k,2]] && #[[1]]!=lst[[k,1]]&],{k,nn}],100]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 23 2020 *)
-
PARI
a(n) = my(t=eulerphi(n), m=1); while ((eulerphi(m) != t) || (m==n), m++); m; \\ Michel Marcus, May 15 2020
-
Python
from sympy import totient def A074987(n): m=1 while totient(m)!=totient(n) or m==n: m+=1 return m # Pontus von Brömssen, May 15 2020
Comments