cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075109 Odd perfect powers (1 together with numbers m^k, m odd, k >= 2).

Original entry on oeis.org

1, 9, 25, 27, 49, 81, 121, 125, 169, 225, 243, 289, 343, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1331, 1369, 1521, 1681, 1849, 2025, 2187, 2197, 2209, 2401, 2601, 2809, 3025, 3125, 3249, 3375, 3481, 3721, 3969, 4225, 4489, 4761, 4913, 5041, 5329, 5625
Offset: 1

Views

Author

Zak Seidov, Oct 11 2002

Keywords

Crossrefs

Intersection of A001597 and A005408.

Programs

  • Haskell
    a075109 n = a075109_list !! (n-1)
    a075109_list = filter odd a001597_list  -- Reinhard Zumkeller, Oct 04 2012
    
  • Magma
    [1] cat [n : n in [3..6000 by 2] | IsPower(n) ]; // Vincenzo Librandi, Mar 31 2014
    
  • Maple
    q:= n-> n=1 or n::odd and igcd(seq(i[2], i=ifactors(n)[2]))>1:
    select(q, [$1..6000])[];  # Alois P. Heinz, May 04 2022
  • Mathematica
    Take[Union[Flatten[Table[a^b, {a, 1, 99, 2}, {b, 2, 15}]]], 50] (* Alonso del Arte, Nov 22 2011 *)
  • PARI
    isok(m) = (m==1) || ((m%2) && ispower(m)); \\ Michel Marcus, May 04 2022
    
  • Python
    from sympy import mobius, integer_nthroot
    def A075109(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n-1+x+sum(mobius(k)*((integer_nthroot(x,k)[0]+1>>1)-1) for k in range(2,x.bit_length())))
        return bisection(f,n,n) # Chai Wah Wu, Feb 25 2025

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=2} mu(k)*(1-zeta(k)*(2^k-1)/2^k) = 1.2890375574... - Amiram Eldar, Dec 19 2020

Extensions

Definition clarified by N. J. A. Sloane, Dec 25 2021