cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049287 Number of nonisomorphic circulant graphs, i.e., undirected Cayley graphs for the cyclic group of order n.

Original entry on oeis.org

1, 2, 2, 4, 3, 8, 4, 12, 8, 20, 8, 48, 14, 48, 44, 84, 36, 192, 60, 336, 200, 416, 188, 1312, 423, 1400, 928, 3104, 1182, 8768, 2192, 8364, 6768, 16460, 11144, 46784, 14602, 58288, 44424, 136128, 52488, 355200, 99880, 432576, 351424, 762608, 364724, 2122944, 798952, 3356408
Offset: 1

Views

Author

Keywords

Comments

Further values for (twice) squarefree and (twice) prime-squared orders can be found in the Liskovets reference.
Terms may be computed by filtering potentially isomorphic graphs of A285620 through nauty. - Andrew Howroyd, Apr 29 2017

Crossrefs

Programs

  • Mathematica
    CountDistinct /@ Table[CanonicalGraph[CirculantGraph[n, #]] & /@ Subsets[Range[Floor[n/2]]], {n, 25}] (* Eric W. Weisstein, May 13 2017 *)

Formula

There is an easy formula for prime orders. Formulae are also known for squarefree and prime-squared orders.
From Andrew Howroyd, Apr 24 2017: (Start)
a(n) <= A285620(n).
a(n) = A285620(n) for n squarefree or twice square free.
a(A000040(n)^2) = A038781(n).
a(n) = Sum_{d|n} A075545(d).
(End)

Extensions

a(48)-a(50) from Andrew Howroyd, Apr 29 2017

A344517 Minimum diameter of 4-regular circulant graphs of order n.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7
Offset: 4

Views

Author

Andres Cicuttin, May 21 2021

Keywords

References

  • F. Boesch and Jhing-Fa Wang, Reliable circulant networks with minimum transmission delay, IEEE Transactions on Circuits and Systems, vol. 32, no. 12, pp. 1286-1291, December 1985, doi: 10.1109/TCS.1985.1085667.
  • Bevan, David et al. Large circulant graphs of fixed diameter and arbitrary degree. Ars Math. Contemp. 13 (2017): 275-291.

Crossrefs

Programs

  • Mathematica
    mindiameter[n_]:=Module[{nmax,tab,stab},
    nmax=Floor[n/2];
    tab=Flatten[#,1]&@Table[Table[{n,i,j,GraphDiameter[CirculantGraph[n,{i,j}]]},{i,1,j-1}],{j,2,nmax}];
    stab=Sort[tab,#1[[4]]<#2[[4]]&];
    stab[[1]][[4]]//Return]
    Table[mindiameter[n],{n,4,120}]
    Table[Ceiling[(Sqrt[2n-1]-1)/2],{n,4,88}] (* Stefano Spezia, May 23 2021 *)

Formula

a(n) = ceiling((sqrt(2n-1)-1)/2).

A344574 Number of ordered pairs (i,j) with 0 < i < j < n such that gcd(i,j,n) > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 3, 1, 6, 0, 13, 0, 15, 7, 21, 0, 37, 0, 39, 16, 45, 0, 73, 6, 66, 28, 81, 0, 130, 0, 105, 46, 120, 21, 181, 0, 153, 67, 189, 0, 262, 0, 213, 118, 231, 0, 337, 15, 306, 121, 303, 0, 433, 51, 369, 154, 378, 0, 583, 0, 435, 217, 465
Offset: 1

Views

Author

Andres Cicuttin, May 23 2021

Keywords

Comments

A 4-regular circulant graph of order n, C(n,i,j), is connected if and only if gcd(n,i,j) = 1, where 0 < i < j < n.
a(n) >= 1 iff n is a composite > 4. - Robert Israel, Nov 26 2024

Examples

			a(8) = 3 via (i, j, n) in {(2, 4, 8), (2, 6, 8), (4, 6, 8)} and that's three such tuples. - _David A. Corneth_, Nov 27 2024
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t,i,g;
    t:= 0:
    for i from 1 to n-2 do
      g:= igcd(i,n);
      if g > 1 then t:= t + nops(select(s -> igcd(s,g) > 1, [$i+1..n-1])) fi
    od:
    t;
    end proc:
    map(f, [$1..80]); # Robert Israel, Nov 26 2024
  • Mathematica
    npairs[n_]:=Module[{k=0},
    Do[Do[
    If[GCD[i,j,n]>1,k++]
    ,{i,1,j-1}],{j,2,n-1}];
    Return[k]];
    Table[npairs[n],{n,1,60}]
  • PARI
    a(n) = {my(res = 0, d = divisors(factorback(factor(n)[,1]))); for(i = 2, #d, res+= moebius(d[i])*binomial((n-1)\d[i], 2)); -res} \\ David A. Corneth, Nov 27 2024
Showing 1-3 of 3 results.