A075900 Expansion of g.f.: Product_{n>0} 1/(1 - 2^(n-1)*x^n).
1, 1, 3, 7, 19, 43, 115, 259, 659, 1523, 3731, 8531, 20883, 47379, 113043, 259219, 609683, 1385363, 3245459, 7344531, 17028499, 38579603, 88585619, 199845267, 457864595, 1028904339, 2339763603, 5256820115, 11896157587, 26626389395
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jul 13 2020: (Start) The a(0) = 1 through a(4) = 19 splittings: () (1) (2) (3) (4) (1,1) (1,2) (1,3) (1),(1) (2,1) (2,2) (1,1,1) (3,1) (2),(1) (1,1,2) (1,1),(1) (1,2,1) (1),(1),(1) (2,1,1) (2),(2) (3),(1) (1,1,1,1) (1,1),(2) (1,2),(1) (2),(1,1) (2,1),(1) (1,1),(1,1) (1,1,1),(1) (2),(1),(1) (1,1),(1),(1) (1),(1),(1),(1) (End)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..3180 (terms 0..1000 from Alois P. Heinz)
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
Crossrefs
Row sums of A327549.
The strict case is A304961.
Partitions of partitions are A001970.
Splittings with equal sums are A074854.
Splittings of compositions are A133494.
Splittings of partitions are A323583.
Splittings with distinct sums are A336127.
Starting with a reversed partition gives A316245.
Starting with a partition instead of composition gives A336136.
Programs
-
Magma
m:=80; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(&*[1-2^(j-1)*x^j: j in [1..m+2]]) )); // G. C. Greubel, Jan 25 2024 -
Maple
oo := 101; t1 := mul(1/(1-x^n/2),n=1..oo): t2 := series(t1,x,oo-1): t3 := seriestolist(t2): A075900 := n->2^n*t3[n+1]; with(combinat); A075900 := proc(n) local i,t1,t2,t3; t1 := partition(n); t2 := 0; for i from 1 to nops(t1) do t3 := t1[i]; t2 := t2+2^(n-nops(t3)); od: t2; end;
-
Mathematica
b[n_]:= b[n]= Sum[d*2^(n - n/d), {d, Divisors[n]}]; a[0]= 1; a[n_]:= a[n]= 1/n*Sum[b[k]*a[n-k], {k,n}]; Table[a[n], {n,0,30}] (* Jean-François Alcover, Mar 20 2014, after Vladeta Jovovic, fixed by Vaclav Kotesovec, Mar 08 2018 *)
-
Maxima
s(m,n):=if n
Vladimir Kruchinin, Sep 06 2014 */ -
PARI
{a(n)=polcoeff(prod(k=1,n,1/(1-2^(k-1)*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Jan 13 2013
-
PARI
{a(n)=polcoeff(exp(sum(k=1,n+1,x^k/(k*(1-2^k*x^k)+x*O(x^n)))),n)} \\ Paul D. Hanna, Jan 13 2013
-
SageMath
m=80; def A075900_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( 1/product(1-2^(j-1)*x^j for j in range(1,m+1)) ).list() A075900_list(m) # G. C. Greubel, Jan 25 2024
Formula
a(n) = Sum_{ partitions n = c_1 + ... + c_k } 2^(n-k). If p(n, m) = number of partitions of n into m parts, a(n) = Sum_{m=1..n} p(n, m)*2^(n-m).
G.f.: Sum_{n>=0} (a(n)/2^n)*x^n = Product_{n>0} 1/(1-x^n/2). - Vladeta Jovovic, Feb 11 2003
a(n) = 1/n*Sum_{k=1..n} A080267(k)*a(n-k). - Vladeta Jovovic, Feb 11 2003
G.f.: exp( Sum_{n>=1} x^n / (n*(1 - 2^n*x^n)) ). - Paul D. Hanna, Jan 13 2013
a(n) = s(1,n), a(0)=1, where s(m,n) = Sum_{k=m..n/2} 2^(k-1)*s(k, n-k) + 2^(n-1), s(n,n) = 2^(n-1), s(m,n)=0, m>. - Vladimir Kruchinin, Sep 06 2014
a(n) ~ 2^(n-2) * (Pi^2 - 6*log(2)^2)^(1/4) * exp(sqrt((Pi^2 - 6*log(2)^2)*n/3)) / (3^(1/4) * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Mar 09 2018
Extensions
More terms from Vladeta Jovovic, Feb 11 2003
Comments