cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A018834 Numbers k such that the decimal expansion of k^2 contains k as a substring.

Original entry on oeis.org

0, 1, 5, 6, 10, 25, 50, 60, 76, 100, 250, 376, 500, 600, 625, 760, 1000, 2500, 3760, 3792, 5000, 6000, 6250, 7600, 9376, 10000, 14651, 25000, 37600, 50000, 60000, 62500, 76000, 90625, 93760, 100000, 109376, 250000, 376000, 495475, 500000, 505025
Offset: 1

Views

Author

Keywords

Examples

			25^2 = 625 which contains 25.
3792^2 = 14_3792_64, 14651^2 = 2_14651_801.
		

Crossrefs

Cf. A000290. Supersequence of A029943.
Cf. A018826 (base 2), A018827 (base 3), A018828 (base 4), A018829 (base 5), A018830 (base 6), A018831 (base 7), A018832 (base 8), A018833 (base 9).
Cf. A029942 (cubes), A075904 (4th powers), A075905 (5th powers).

Programs

  • Haskell
    import Data.List (isInfixOf)
    a018834 n = a018834_list !! (n-1)
    a018834_list = filter (\x -> show x `isInfixOf` show (x^2)) [0..]
    -- Reinhard Zumkeller, Jul 27 2011
    
  • Mathematica
    Select[Range[510000], MemberQ[FromDigits /@ Partition[IntegerDigits[#^2], IntegerLength[#], 1], #] &] (* Jayanta Basu, Jun 29 2013 *)
    Select[Range[0,510000],StringPosition[ToString[#^2],ToString[#]]!={}&] (* Ivan N. Ianakiev, Oct 02 2016 *)
  • Python
    from itertools import count, islice
    def A018834_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:str(n) in str(n**2), count(max(startvalue,0)))
    A018834_list = list(islice(A018834_gen(),20)) # Chai Wah Wu, Apr 04 2023

A029942 Numbers k such that the decimal expansion of k^3 contains k as a substring.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 10, 24, 25, 32, 40, 49, 50, 51, 56, 60, 75, 76, 90, 99, 100, 125, 240, 249, 250, 251, 375, 376, 400, 490, 499, 500, 501, 510, 600, 624, 625, 749, 750, 751, 760, 782, 875, 900, 990, 999, 1000, 1249, 1250, 2400, 2490, 2500, 2510
Offset: 1

Views

Author

Keywords

Examples

			24 is a term as 24^3 = 13824 contains 24 as a substring.
250 is a term as 250^3 = 1562500 contains 250 as a substring.
6^3 = 21_6, 782^3 = 4_782_11768.
		

Crossrefs

Cf. A018834 (squares), A075904 (4th powers), A075905 (5th powers), A136490 (base 2).
Cf. A000578. Supersequence of A029943.

Programs

  • Haskell
    import Data.List (isInfixOf)
    a029942 n = a029942_list !! (n-1)
    a029942_list = [x | x <- [0..], show x `isInfixOf` show (x^3)]
    -- Reinhard Zumkeller, Feb 29 2012
  • Mathematica
    n3ssQ[n_]:=Module[{idn=IntegerDigits[n],idn3=Partition[ IntegerDigits[ n^3], IntegerLength[n],1]},MemberQ[idn3,idn]]; Join[{0},Select[Range[ 2600],n3ssQ]] (* Harvey P. Dale, Jan 23 2012 *)
    Select[Range[0,2600],SequenceCount[IntegerDigits[#^3],IntegerDigits[ #]]> 0&] (* Harvey P. Dale, Aug 29 2021 *)

A075904 Numbers k such that k^4 has k as a substring of its decimal expansion.

Original entry on oeis.org

0, 1, 5, 6, 10, 25, 50, 60, 76, 83, 92, 100, 107, 211, 217, 250, 352, 363, 376, 500, 556, 600, 625, 636, 760, 863, 909, 935, 1000, 1531, 1636, 2263, 2500, 2503, 3630, 3760, 4342, 5000, 5001, 6000, 6250, 7245, 7600, 8578, 9350, 9376, 10000, 25000, 28206, 32213
Offset: 1

Views

Author

Zak Seidov, Sep 27 2002

Keywords

Examples

			6^4 = 129_6, 83^4 = 4745_83_21, 2503^4 = 39_2503_37770081.
		

Crossrefs

Cf. A018834 (squares), A029942 (cubes), A075905 (5th powers).

Programs

  • Mathematica
    Select[Range[10000], StringPosition[ToString[ #^4], ToString[ # ]] != {} &] (* Tanya Khovanova, Oct 11 2007 *)
    ssQ[n_]:=Module[{idn=IntegerDigits[n],idn4=IntegerDigits[n^4]}, MemberQ[ Partition[ idn4, Length[ idn],1], idn]]; Select[Range[10000],ssQ] (* Harvey P. Dale, Mar 13 2013 *)
  • Python
    A075904_list, m = [0], [24, -36, 14, -1, 0]
    for n in range(1,10**9+1):
        for i in range(4):
            m[i+1] += m[i]
        if str(n) in str(m[-1]):
            A075904_list.append(n) # Chai Wah Wu, Nov 05 2014

Extensions

More terms from Tanya Khovanova, Oct 11 2007
Added 0 to sequence by Chai Wah Wu, Nov 05 2014
Showing 1-3 of 3 results.