cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A003226 Automorphic numbers: m^2 ends with m.

Original entry on oeis.org

0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, 109376, 890625, 2890625, 7109376, 12890625, 87109376, 212890625, 787109376, 1787109376, 8212890625, 18212890625, 81787109376, 918212890625, 9918212890625, 40081787109376, 59918212890625, 259918212890625, 740081787109376
Offset: 1

Views

Author

Keywords

Comments

Also called curious numbers.
For entries after the second, two successive terms sum up to a total having the form 10^n + 1. - Lekraj Beedassy, Apr 29 2005 [This comment is clearly wrong as stated. The sums of two consecutive terms are 1, 6, 11, 31, 101, 452, 1001, 10001, 100001, 200001, 1000001, 3781250, .... - T. D. Noe, Nov 14 2010]
If a d-digit number n is in the sequence, then so is 10^d+1-n. However, the same number can be 10^d+1-n for different n in the sequence (e.g., 10^3+1-376 = 10^4+1-9376 = 625), which spoils Beedassy's comment. - Robert Israel, Jun 19 2015
Substring of both its square and its cube not congruent to 0 (mod 10). See A029943. - Robert G. Wilson v, Jul 16 2005
a(n)^k ends with a(n) for k > 0; see also A029943. - Reinhard Zumkeller, Nov 26 2011
Apart from initial term, a subsequence of A046831. - M. F. Hasler, Dec 05 2012
This is also the sequence of numbers such that the n-th m-gonal number ends in n for any m == 0,4,8,16 (mod 20). - Robert Dawson, Jul 09 2018
Apart from 6, a subsequence of A301912. - Robert Dawson, Aug 01 2018

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 76, p. 26, Ellipses, Paris 2008.
  • V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
  • R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2 (No. 3, 1969), 170-174.
  • Jan Gullberg, Mathematics, From the Birth of Numbers, W. W. Norton & Co., NY, page 253-254.
  • B. A. Naik, 'Automorphic numbers' in 'Science Today'(subsequently renamed '2001') May 1982 pp. 59, Times of India, Mumbai.
  • Ya. I. Perelman, Algebra can be fun, pp. 97-98.
  • Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Hoboken, 2005, p. 64.
  • C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (isSuffixOf)
    a003226 n = a003226_list !! (n-1)
    a003226_list = filter (\x -> show x `isSuffixOf` show (x^2)) a008851_list
    -- Reinhard Zumkeller, Jul 27 2011
    
  • Magma
    [n: n in [0..10^7] | Intseq(n^2)[1..#Intseq(n)] eq Intseq(n)]; // Vincenzo Librandi, Jul 03 2015
    
  • Maple
    V:= proc(m) option remember;
      select(t -> t^2 - t mod 10^m = 0, map(s -> seq(10^(m-1)*j+s, j=0..9), V(m-1)))
    end proc:
    V(0):= {0,1}:
    V(1):= {5,6}:
    sort(map(op,[V(0),seq(V(i) minus V(i-1),i=1..50)])); # Robert Israel, Jun 19 2015
  • Mathematica
    f[k_] := (r = Reduce[0 < 10^k < n < 10^(k + 1) && n^2 == m*10^(k + 1) + n, {n, m}, Integers]; If[Head[r] === And, n /. ToRules[r], n /. {ToRules[r]}]); Flatten[ Join[{0, 1}, Table[f[k], {k, 0, 13}]]] (* Jean-François Alcover, Dec 01 2011 *)
    Union@ Join[{1}, Array[PowerMod[5, 2^#, 10^#] &, 16, 0], Array[PowerMod[16, 5^#, 10^#] &, 16, 0]] (* Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    is_A003226(n)={n<2 || 10^valuation(n^2-n,10)>n} \\ M. F. Hasler, Dec 05 2012
    
  • PARI
    A003226(n)={ n<3 & return(n-1); my(i=10,j=10,b=5,c=6,a=b); for( k=4,n, while(b<=a, b=b^2%i*=10); while(c<=a, c=(2-c)*c%j*=10); a=min(b,c)); a } \\ M. F. Hasler, Dec 06 2012
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.modular import crt
    def A003226_gen(): # generator of terms
        a = 0
        yield from (0,1)
        for n in count(0):
            b = sorted((int(crt(m:=(1< a:
                yield from b
                a = b[1]
            elif b[1] > a:
                yield b[1]
                a = b[1]
    A003226_list = list(islice(A003226_gen(),15)) # Chai Wah Wu, Jul 25 2022
  • Sage
    def automorphic(maxdigits, pow, base=10) :
        morphs = [[0]]
        for i in range(maxdigits):
            T=[d*base^i+x for x in morphs[-1] for d in range(base)]
            morphs.append([x for x in T if x^pow % base^(i+1) == x])
        res = list(set(sum(morphs, []))); res.sort()
        return res
    # call with pow=2 for this sequence, Eric M. Schmidt, Feb 09 2014
    

Formula

Equals {0, 1} union A007185 union A016090.

Extensions

More terms from Michel ten Voorde, Apr 11 2001
Edited by David W. Wilson, Sep 26 2002
Incorrect statement removed from title by Robert Dawson, Jul 09 2018

A018826 Numbers n such that n is a substring of its square when both are written in base 2.

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 27, 32, 41, 54, 64, 82, 108, 128, 145, 164, 165, 256, 283, 290, 328, 487, 512, 545, 566, 580, 974, 1024, 1090, 1132, 1160, 1773, 1948, 2048, 2113, 2180, 2320, 2701, 3546, 3896, 4096, 4226, 4261, 4360, 4757, 5402, 7092, 7625, 8079, 8192
Offset: 1

Views

Author

Keywords

Comments

Complement of A136492. - Reinhard Zumkeller, Jan 01 2008
A136510(a(n)) = 2 for n>0. - Reinhard Zumkeller, Jan 03 2008
From Robert Israel, Jul 11 2018: (Start)
Contains A000079.
If x satisfies x^2 == 8*x + 1 (mod 2^m) and 0 < x < 2^(m-3) then x is in the sequence. Note that x^2 == 8*x + 1 has 4 solutions mod 2^m for m >= 3. Terms obtained in this way include 27, 283, 1773, 9965, 55579, 206573, .... (End)

Examples

			27 in binary is 11011 and 27^2 = 729 in binary is 1011011001 which has substring 11011. - _Michael Somos_, Mar 16 2015
		

Crossrefs

Cf. A018827 (base 3), A018828 (base 4), A018829 (base 5), A018830 (base 6), A018831 (base 7), A018832 (base 8), A018833 (base 9), A018834 (base 10).

Programs

  • Maple
    filter:= proc(n) local S,S2;
        S:= convert(convert(n,binary),string);
        S2:= convert(convert(n^2,binary),string);
        StringTools:-Search(S,S2)<>0
    end proc:
    select(filter, [$0..10000]); # Robert Israel, Jul 11 2018
  • Mathematica
    Select[Range[0, 8192], {} != SequencePosition @@ IntegerDigits[{#^2, #}, 2] &] (* Giovanni Resta, Aug 20 2018 *)
    Select[Range[0,10000],SequenceCount[IntegerDigits[#^2,2],IntegerDigits[#,2]]>0&] (* Harvey P. Dale, May 03 2022 *)
  • PARI
    issub(b, bs, k) = {for (i=1, #b, if (b[i] != bs[i+k-1], return (0));); return (1);}
    a076141(n) = {if (n, b = binary(n), b = [0]); if (n, bs = binary(n^2), bs = [0]); sum(k=1, #bs - #b +1, issub(b, bs, k));}
    lista(nn) = for (n=0, nn, if (a076141(n) == 1, print1(n, ", "))); \\ Michel Marcus, Mar 15 2015
    
  • Python
    def ok(n): return bin(n)[2:] in bin(n**2)[2:]
    print([k for k in range(9999) if ok(k)]) # Michael S. Branicky, Apr 04 2024

A029942 Numbers k such that the decimal expansion of k^3 contains k as a substring.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 10, 24, 25, 32, 40, 49, 50, 51, 56, 60, 75, 76, 90, 99, 100, 125, 240, 249, 250, 251, 375, 376, 400, 490, 499, 500, 501, 510, 600, 624, 625, 749, 750, 751, 760, 782, 875, 900, 990, 999, 1000, 1249, 1250, 2400, 2490, 2500, 2510
Offset: 1

Views

Author

Keywords

Examples

			24 is a term as 24^3 = 13824 contains 24 as a substring.
250 is a term as 250^3 = 1562500 contains 250 as a substring.
6^3 = 21_6, 782^3 = 4_782_11768.
		

Crossrefs

Cf. A018834 (squares), A075904 (4th powers), A075905 (5th powers), A136490 (base 2).
Cf. A000578. Supersequence of A029943.

Programs

  • Haskell
    import Data.List (isInfixOf)
    a029942 n = a029942_list !! (n-1)
    a029942_list = [x | x <- [0..], show x `isInfixOf` show (x^3)]
    -- Reinhard Zumkeller, Feb 29 2012
  • Mathematica
    n3ssQ[n_]:=Module[{idn=IntegerDigits[n],idn3=Partition[ IntegerDigits[ n^3], IntegerLength[n],1]},MemberQ[idn3,idn]]; Join[{0},Select[Range[ 2600],n3ssQ]] (* Harvey P. Dale, Jan 23 2012 *)
    Select[Range[0,2600],SequenceCount[IntegerDigits[#^3],IntegerDigits[ #]]> 0&] (* Harvey P. Dale, Aug 29 2021 *)

A018827 Numbers n such that n is a substring of its square in base 3 (written in base 10).

Original entry on oeis.org

0, 1, 3, 7, 9, 27, 32, 43, 81, 131, 243, 287, 706, 729, 1330, 1390, 1679, 1832, 2187, 2899, 3848, 4170, 5234, 6436, 6561, 11544, 12510, 14261, 19308, 19683, 30433, 33181, 34135, 35203, 35323, 37530, 38669, 42783, 59049, 72070, 79583, 93539, 99543
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018826 (base 2), A018828 (base 4), A018829 (base 5), A018830 (base 6), A018831 (base 7), A018832 (base 8), A018833 (base 9), A018834 (base 10).

Programs

  • Mathematica
    Select[Range[0, 10^5], StringContainsQ[IntegerString[#^2, 3], IntegerString[#, 3]] &] (* Paolo Xausa, Apr 05 2024 *)
  • Python
    from sympy.ntheory import digits
    def s(n, base=3): return "".join(map(str, digits(n, base)[1:]))
    def ok(n): return s(n) in s(n**2)
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Apr 04 2024

A018828 Numbers n such that n is a substring of its square (both n and n squared in base 4) (written in base 10).

Original entry on oeis.org

0, 1, 4, 16, 41, 54, 64, 164, 165, 256, 290, 487, 545, 566, 1024, 1160, 1948, 2180, 3546, 4096, 4226, 4261, 7625, 8321, 8720, 9514, 13813, 13867, 15913, 16158, 16384, 16904, 33284, 46126, 54854, 55468, 63652, 64632, 65536, 66050, 67616, 113047, 130591
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018826 (base 2), A018827 (base 3), A018829 (base 5), A018830 (base 6), A018831 (base 7), A018832 (base 8), A018833 (base 9), A018834 (base 10).

Programs

  • Mathematica
    Select[Range[0,150000],SequenceCount[IntegerDigits[#^2,4],IntegerDigits[#,4]]>0&] (* Harvey P. Dale, Aug 13 2023 *)

Extensions

Definition clarified by Harvey P. Dale, Aug 13 2023

A018829 Numbers n such that n is a substring of its square in base 5 (written in base 10).

Original entry on oeis.org

0, 1, 5, 14, 25, 38, 125, 349, 408, 543, 625, 3125, 4743, 5292, 10888, 12196, 13201, 15625, 25509, 26460, 36536, 43614, 55038, 57837, 78125, 136888, 207889, 219698, 234783, 390625, 445663, 1090347, 1098490, 1336564, 1437874, 1720752, 1915227
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018826 (base 2), A018827 (base 3), A018828 (base 4), A018830 (base 6), A018831 (base 7), A018832 (base 8), A018833 (base 9), A018834 (base 10).

Programs

  • Mathematica
    Select[Range[0,2*10^6],SequenceCount[IntegerDigits[ #^2,5],IntegerDigits[ #,5]]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 04 2019 *)

A018830 Numbers n such that n is a substring of its square in base 6 (written in base 10).

Original entry on oeis.org

0, 1, 3, 4, 6, 9, 18, 24, 28, 36, 54, 81, 108, 136, 144, 168, 216, 324, 486, 648, 816, 864, 1008, 1216, 1296, 1944, 2916, 3888, 4896, 5184, 6048, 6458, 6561, 7296, 7776, 8451, 11664, 16768, 17496, 22779, 23328, 23985, 29376, 29889, 31104, 34299, 34549, 36288
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018826 (base 2), A018827 (base 3), A018828 (base 4), A018829 (base 5), A018831 (base 7), A018832 (base 8), A018833 (base 9), A018834 (base 10).

Programs

  • Mathematica
    Select[Range[0, 10^5], StringContainsQ[IntegerString[#^2, 6], IntegerString[#, 6]] &] (* Paolo Xausa, Apr 05 2024 *)

A018831 Numbers n such that n is a substring of its square in base 7 (written in base 10).

Original entry on oeis.org

0, 1, 7, 30, 49, 285, 343, 911, 1900, 2208, 2401, 13962, 16807, 59763, 64098, 69128, 85880, 97734, 117649, 195032, 418341, 754422, 823543, 2162126, 2629229, 2790841, 3488518, 3842400, 4960401, 5764801, 7923812, 8559490, 15134882, 19765943, 31466333, 36415297
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018826 (base 2), A018827 (base 3), A018828 (base 4), A018829 (base 5), A018830 (base 6), A018832 (base 8), A018833 (base 9), A018834 (base 10).

Programs

  • Mathematica
    Select[Range[0, 10^7], StringContainsQ[IntegerString[#^2, 7], IntegerString[#, 7]] &] (* Paolo Xausa, Apr 05 2024 *)

Extensions

a(35)-a(36) from Pontus von Brömssen, Apr 04 2024

A018832 Numbers n such that n is a substring of its square in base 8 (written in base 10).

Original entry on oeis.org

0, 1, 8, 27, 64, 283, 290, 512, 545, 1948, 2320, 4096, 4360, 8452, 13813, 16158, 16642, 23063, 26139, 27427, 27734, 32768, 33025, 67616, 87723, 110503, 129264, 130591, 133136, 184504, 206573, 226094, 262144, 264200, 526340, 701784, 1044728, 1050626
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018826 (base 2), A018827 (base 3), A018828 (base 4), A018829 (base 5), A018830 (base 6), A018831 (base 7), A018833 (base 9), A018834 (base 10).

Programs

  • Mathematica
    Select[Range[0, 10^6], StringContainsQ[IntegerString[#^2, 8], IntegerString[#, 8]] &] (* Paolo Xausa, Apr 05 2024 *)

A018833 Numbers n such that n is a substring of its square in base 9 (written in base 10).

Original entry on oeis.org

0, 1, 9, 32, 43, 81, 287, 706, 729, 4170, 6561, 30433, 37530, 38669, 42783, 59049, 99543, 192211, 281782, 394981, 415578, 531441, 561785, 666112, 1723076, 2046242, 3039924, 3485488, 4782969, 8684182, 11512384, 12684634, 18346925, 19988197, 29728486, 31190295
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A018826 (base 2), A018827 (base 3), A018828 (base 4), A018829 (base 5), A018830 (base 6), A018831 (base 7), A018832 (base 8), A018834 (base 10).

Programs

  • Mathematica
    Select[Range[0, 10^7], StringContainsQ[IntegerString[#^2, 9], IntegerString[#, 9]] &] (* Paolo Xausa, Apr 05 2024 *)

Extensions

a(35)-a(36) from Pontus von Brömssen, Apr 04 2024
Showing 1-10 of 27 results. Next