A075500
Stirling2 triangle with scaled diagonals (powers of 5).
Original entry on oeis.org
1, 5, 1, 25, 15, 1, 125, 175, 30, 1, 625, 1875, 625, 50, 1, 3125, 19375, 11250, 1625, 75, 1, 15625, 196875, 188125, 43750, 3500, 105, 1, 78125, 1984375, 3018750, 1063125, 131250, 6650, 140, 1, 390625, 19921875
Offset: 1
[1]; [5,1]; [25,15,1]; ...; p(3,x) = x(25 + 15*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 5 1
* 25 15 1
* 125 175 30 1
* 625 1875 625 50 1
* 3125 19375 11250 1625 75 1
* 15625 196875 188125 43750 3500 105 1
* 78125 1984375 3018750 1063125 131250 6650 140 1
(End)
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> 5^n, 9); # Peter Luschny, Jan 28 2016
-
Flatten[Table[5^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[5^#&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
for(n=1, 11, for(m=1, n, print1(5^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A016164
Expansion of 1/((1-5*x)*(1-10*x)).
Original entry on oeis.org
1, 15, 175, 1875, 19375, 196875, 1984375, 19921875, 199609375, 1998046875, 19990234375, 199951171875, 1999755859375, 19998779296875, 199993896484375, 1999969482421875, 19999847412109375, 199999237060546875
Offset: 0
-
[n le 2 select 15^(n-1) else 15*Self(n-1) -50*Self(n-2): n in [1..31]]; // G. C. Greubel, Nov 09 2024
-
Table[5^n*(2^(n+1)-1), {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
LinearRecurrence[{15,-50},{1,15},20] (* Harvey P. Dale, Aug 08 2023 *)
-
Vec(1/((1-5*x)(1-10*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
-
A016164=BinaryRecurrenceSequence(15,-50,1,15)
[A016164(n) for n in range(31)] # G. C. Greubel, Nov 09 2024
Original entry on oeis.org
1, 50, 1625, 43750, 1063125, 24281250, 532890625, 11386718750, 238867578125, 4946347656250, 101481884765625, 2068161621093750, 41943091064453125, 847579699707031250, 17082562164306640625, 343617765808105468750, 6901873153839111328125
Offset: 0
-
Table[5^n*(-1 + 3*2^(3+n) + 2^(6+2*n) - 3^(4+n))/6, {n, 0, 20}] (* Vaclav Kotesovec, Dec 12 2015 *)
-
Vec(1/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)) + O(x^30)) \\ Colin Barker, Dec 11 2015
Original entry on oeis.org
1, 75, 3500, 131250, 4344375, 132890625, 3855156250, 107765625000, 2933008203125, 78271552734375, 2058270703125000, 53524929199218750, 1380066321044921875, 35349237725830078125, 900813505310058593750, 22863955398559570312500, 578500758117828369140625
Offset: 0
-
Table[5^n*(1 - 2^(n+6) + 2*3^(n+5) - 4^(n+5) + 5^(n+4))/24, {n, 0, 20}] (* Vaclav Kotesovec, Dec 12 2015 *)
-
Vec(1/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + O(x^30)) \\ Colin Barker, Dec 12 2015
Original entry on oeis.org
1, 105, 6650, 330750, 14266875, 560896875, 20682062500, 728227500000, 24779833203125, 821666548828125, 26708267167968750, 854772944238281250, 27023254648193359375, 846046877171630859375, 26282219820458984375000, 811330550012329101562500
Offset: 0
-
Table[5^(n-1) * (-1 + 5*2^(5+n) + 5*2^(11+2*n) - 10*3^(5+n) - 5^(6+n) + 6^(5+n))/24, {n, 0, 20}] (* Vaclav Kotesovec, Dec 12 2015 *)
-
Vec(1/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)*(1-30*x)) + O(x^30)) \\ Colin Barker, Dec 12 2015
A075915
Seventh column of triangle A075500.
Original entry on oeis.org
1, 140, 11550, 735000, 39991875, 1960612500, 89303500000, 3853850000000, 159664583203125, 6409926960937500, 251055710800781250, 9641722822265625000, 364483553427490234375, 13602971247133789062500, 502386213470141601562500, 18394848021467285156250000
Offset: 0
-
Table[5^(n-1) * (1 - 3*2^(7 + n) - 5*2^(14 + 2*n) + 5*3^(7 + n) + 3*5^(7 + n) - 6^(7 + n) + 7^(6 + n))/144, {n, 0, 20}] (* Vaclav Kotesovec, Dec 12 2015 *)
-
Vec(1/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)*(1-30*x)*(1-35*x)) + O(x^30)) \\ Colin Barker, Dec 12 2015
Showing 1-6 of 6 results.
Comments