A076264 Number of ternary (0,1,2) sequences without a consecutive '012'.
1, 3, 9, 26, 75, 216, 622, 1791, 5157, 14849, 42756, 123111, 354484, 1020696, 2938977, 8462447, 24366645, 70160958, 202020427, 581694636, 1674922950, 4822748423, 13886550633, 39984728949, 115131438424, 331507764639
Offset: 0
Examples
1/rho(9)^3 = -26*1 - 3*rho(9) + 9*rho(9)^2, (approximately 0.15064426) with rho(9) given in the Nov 04 2013 comment above. - _Wolfdieter Lang_, Nov 04 2013 G.f. = 1 + 3*x + 9*x^2 + 26*x^3 + 75*x^4 + 216*x^5 + 622*x^6 + 1791*x^7 + ...
References
- A. Tucker, Applied Combinatorics, 4th ed. p. 277
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Taras Goy and Mark Shattuck, Toeplitz-Hessenberg determinant formulas for the sequence F_n-1, Online J. Anal. Comb. (2025) Vol. 19, Paper 1, 1-26. See p. 12.
- Leo J. Guibas and Andrew M. Odlyzko, String overlaps, pattern matching, and nontransitive games, J. Combin. Theory Ser. A 30 (1981), 183-208. [Comment: The authors use generating functions in terms of z^{-1}. To get the g.f. of the sequence, as shown below in the FORMULA section, let x=z^{-1} and perform simple algebra. There are some minor typos in Theorem 2.1, p. 191, that can be easily corrected by looking at the proof. - _Petros Hadjicostas_, Sep 12 2017]
- Yun-Tak Oh, Hosho Katsura, Hyun-Yong Lee, and Jung Hoon Han, Proposal of a spin-one chain model with competing dimer and trimer interactions, arXiv:1709.01344 [cond-mat.str-el], 2017.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-1).
Crossrefs
The g.f. corresponds to row 3 of triangle A225682.
Programs
-
GAP
List([0..25],n->Sum([0..Int(n/3)],k->Binomial(n-2*k,k)*(-1)^k*3^(n-3*k))); # Muniru A Asiru, Feb 20 2018
-
Mathematica
LinearRecurrence[{3,0,-1},{1,3,9},30] (* Harvey P. Dale, Feb 28 2016 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / (1 - 3*x + x^3) + x * O(x^n), n))};
Formula
a(n) is asymptotic to g*c^n where c = cos(Pi/18)/cos(7*Pi/18) and g is the largest real root of 81*x^3 - 81*x^2 - 9*x + 1 = 0. - Benoit Cloitre, Nov 06 2002
G.f.: 1/(1 - 3x + x^3).
a(n) = 3*a(n-1) - a(n-3), n > 0.
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2k, k)(-1)^k*3^(n-3k). - Paul Barry, Oct 20 2004
a(n) = middle term in M^(n+1) * [1 0 0], where M = the 3 X 3 matrix [2 1 1 / 1 1 0 / 1 0 0]. Right term = A052536(n), left term = A052536(n+1). - Gary W. Adamson, Sep 05 2005
Comments