A076296 Consider all Pythagorean triples (X,X+7,Z); sequence gives X values.
-3, 0, 5, 8, 21, 48, 65, 140, 297, 396, 833, 1748, 2325, 4872, 10205, 13568, 28413, 59496, 79097, 165620, 346785, 461028, 965321, 2021228, 2687085, 5626320, 11780597, 15661496, 32792613, 68662368, 91281905, 191129372, 400193625, 532029948, 1113983633
Offset: 0
Examples
8 is in the sequence as the shorter leg of the (8,15,17) triangle.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
Crossrefs
Programs
-
Magma
I:=[-3,0,5,8,21,48,65]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
-
Mathematica
CoefficientList[Series[(3-3x-5x^2-21x^3+5x^4+3x^5+4x^6)/(-1+x+6x^3-6x^4-x^6+x^7),{x,0,50}],x] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *) LinearRecurrence[{1,0,6,-6,0,-1,1}, {-3,0,5,8,21,48,65}, 50] (* T. D. Noe, Feb 07 2012 *)
-
PARI
x='x+O('x^30); Vec((-3+3*x+5*x^2+21*x^3-5*x^4-3*x^5-4*x^6)/((1-x)*(1-6*x^3 +x^6))) \\ G. C. Greubel, May 04 2018
Formula
a(n) = 6a(n-3) - a(n-6) + 14 = (A076293(n) - 7)/2.
a(3*n+1) = 7*A001652(n).
From Mohamed Bouhamida, Jul 06 2007: (Start)
a(n) = 5*(a(n-3) + a(n-6)) - a(n-9) + 28.
a(n) = 7*(a(n-3) - a(n-6)) + a(n-9). (End)
G.f.: (-3 + 3*x + 5*x^2 + 21*x^3 - 5*x^4 - 3*x^5 - 4*x^6)/((1-x)*(1 - 6*x^3 + x^6)). - Klaus Brockhaus, Feb 18 2009
Extensions
More terms from Klaus Brockhaus, Feb 18 2009
Comments